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Abstract8

How does the similarity between stimuli affect our ability to learn appropriate response asso-9

ciations for them? In typical laboratory experiments learning is investigated under somewhat10

ideal circumstances, where stimuli are easily discriminable. This is not representative of most11

real-life learning, where overlapping “stimuli” can result in different “rewards” and may be12

learned simultaneously (e.g., you may learn over repeated interactions that a specific dog is13

friendly, but that a very similar looking one isn’t). With two experiments, we test how humans14

learn in three stimulus conditions: one “best case” condition in which stimuli have idealized15

and highly discriminable visual and semantic representations, and two in which stimuli have16

overlapping representations, making them less discriminable. We find that, unsurprisingly, de-17

creasing stimuli discriminability decreases performance. We develop computational models to18

test different hypotheses about how reinforcement learning (RL) and working memory (WM)19

processes are affected by different stimulus conditions. Our results replicate earlier studies20

demonstrating the importance of both processes to capture behavior. However, our results21

extend previous studies by demonstrating that RL, and not WM, is affected by stimulus dis-22

tinctness: people learn slower and have higher across-stimulus value confusion at decision when23

stimuli are more similar to each other. These results illustrate strong effects of stimulus type24

on learning and demonstrate the importance of considering parallel contributions of different25

cognitive processes when studying behavior.26
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1 Introduction27

Humans are efficient learners, but how fast we learn, depends heavily on what we learn about. For28

example, a teacher learning the name of two new transfer students may only need to be told their29

names once, but they may need much more trial and error for each student if they’re learning the30

name of the entire class at the same time. Furthermore, if the students look alike, learning may31

require even more effort. Here, we formally explore how stimulus discriminability (in a semantic32

and visual domain) impacts learning, and whether the multiple processes involved in learning are33

affected differently.34

Specifically, we investigate stimulus discriminability in a stimulus-action association task in35

which both reinforcement learning (RL) and working memory (WM) processes are utilized (e.g.,36

Collins & Frank, 2012). Reinforcement learning (RL) broadly refers to the process that character-37

izes how people learn incrementally through valenced feedback (Sutton & Barto, 1998). Working38

memory (WM) is a flexible, but capacity-limited process involved in actively maintaining percep-39

tually unavailable information over a short period of time (Cowan, 2017). While there has been an40

increase in investigating the interplay between these two essential processes (for a review, see Yoo41

& Collins, 2022), there still is much to be learned about how the two interact in different settings.42

For example, researchers in both RL and WM fields consider stimulus carefully when designing43

experiments, but each field tends to focus on different aspects of stimuli. RL studies tend to use44

a variety of stimuli across tasks. Sometimes they use stimuli with low semantic information, such45

as gabor patches, fractals, and foreign alphabet characters (e.g., Farashahi, Rowe, Aslami, Lee, &46

Soltani, 2017; Niv et al., 2015; Oemisch et al., 2019; Wilson & Niv, 2012; Wunderlich, Beierholm,47

Bossaerts, & O’Doherty, 2011; Radulescu, Niv, & Ballard, 2019; Daw, Gershman, Seymour, Dayan,48

& Dolan, 2011), under the assumption that relying on stimuli that are easy to name and have high49

semantic discriminability (i.e., have different names), such as different common objects, shapes,50

and colors (e.g., Collins & Frank, 2012; Collins, 2018; Farashahi, Xu, Wu, & Soltani, 2020), may51

affect behavior (perhaps by employing more explicit processes like WM). WM studies’ choice of52

stimuli is much more explicit, due to traditional WM being formalized as being modality specific53

(i.e., containing separate visual and verbal storage units; Baddeley & Hitch, 1974). Stimuli that54

are nameable (e.g., spoken words, digits, or words) are considered to relate to verbal WM (e.g.,55

Conrad, 1964), while less easily nameable stimuli (e.g., orientations, spatial frequencies) correspond56

to visual WM (e.g., Luck & Vogel, 1997; Wilken & Ma, 2004).57

From previous research, it is apparent that there is some consideration of how different stimuli58

may affect behavior. However, it is still unclear how stimulus discriminability affects RL, WM, or59

their interplay. How do different types of stimuli affect RL and WM processes during an associative60

learning task? Specifically, are RL and WM differently affected by how distinct stimuli are? To61

address our question, we designed and collected data on two stimulus-response association learning62

experiments, manipulating stimulus discriminability. Learning was measured in three stimulus63

conditions. There is evidence that human learning differs for abstract and naturalistic stimuli64
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(Farashahi et al., 2020), so one of our primary criteria when choosing stimulus sets was for them to65

be similarly "naturalistic" and similarly familiar (vs. novel). Our first condition, the “Standard”66

condition, we used a standard stimulus set, in which the stimuli images that were discriminable67

visually and semantically. Second, the “Text” condition had stimuli which were simply text printed68

of different nouns, designed to limit visual information while maintaining semantic information.69

Finally, in our “Variants” condition, stimulus sets contained different example images of the same70

noun, designed to decrease semantic discriminability across stimuli without simplifying the stimuli71

themselves (i.e., images alone had full semantic information, but as a group caused interference by72

all being associated with the same name). We investigated the effect of these conditions through73

behavioral comparisons of learning behavior across the three conditions and two load conditions,74

as well as computational modeling to try to understand changes in the underlying RL and WM75

processes across conditions.76

Generally, we predicted that both RL and WM would be necessary to capture behavior in all77

conditions, but that the processes would behave differently across the three stimulus conditions.78

However, due to 1) the fact that both Text and Variants conditions likely had lowered discriminabil-79

ity in both visual and semantic dimensions and 2) the potentially competing effects between RL and80

WM, it was difficult to predict exactly how changes in RL, WM, and their interplay would affect81

the ultimate behavioral performance across conditions. Take, for example, the Variants condition82

vs. the Standard condition. An assumption in the RL literature is that learning associations from83

stimuli with semantic information (e.g., Standard condition) may recruit "more explicit" processes84

like WM, and thus that a Variants condition could avoid contamination from explicit processes85

and better access to implicit learning ones. However, the assumption that decreasing semantic86

discriminability would lower the contribution of WM in learning is untested. In fact, the visual87

WM literature consistently demonstrates that WM representations need not be verbalizable at all.88

Additionally, people are able to reliably discriminate between WM representations of naturalistic89

stimuli with the same label (Brady, Störmer, & Alvarez, 2016). Similarly, if RL is indeed an im-90

plicit process, as often hinted in the literature, then stimulus condition should not impact it much.91

However, if RL instead relies heavily on distinct semantic information across stimuli, performance92

should suffer in the Variants condition. Thus, while we had a strong prediction that stimulus type93

would impact learning, and could impact the different processes supporting learning in different94

ways, we did not have a strong prediction as to the exact nature of this impact. We designed the95

study with an eye to behavioral modeling to help understand the intertwined processes.96

Our results confirmed that stimulus type impacted learning; we observed lower performance in97

the Variants and Text conditions relative to the Standard condition, demonstrating that overall98

discriminability is important in learning. The behavioral deficit was particularly pronounced in the99

Variants condition. Through computational modeling, we found that stimulus conditions seemed100

to specifically affect RL, and not WM.101
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2 Experiment 1102

In Experiment 1, participants completed a Conditional Associative Learning paradigm, learning103

correct stimulus-action associations through feedback.104

2.1 Experimental Methods105

2.1.1 Participants106

88 participants were recruited through Amazon Mechanical Turk (MTurk), provided informed and107

written consent, and verified they were adults. The study was in accordance with the Declaration of108

Helsinki and was approved by the Institutional Review Board of University of California, Berkeley109

(IRB 2016-01-0820). Participants received $0.50 base payment for participating, and earned bonus110

payments for the time they spent on the task and their accuracy. Participants were informed that111

each correct response would increase their payment, and were reminded of this when starting each112

block. On average, participants made $3.30 and spent 42 minutes on the task. Participants who113

were performing below chance after the fourth or eighth block were discontinued from completing114

the task, but were compensated for their time. Participants who performed under 40% accuracy115

overall were additionally excluded from further analyses. 19 participants did not complete the task116

and 10 participants did not meet the accuracy threshold, leaving 59 participants in the final online117

sample.118

2.1.2 Experimental design119

Participants completed a Conditional Associative Learning paradigm (Petrides, 1985), adapted to120

investigate the contributions of RL and WM in learning (Collins & Frank, 2012; Collins, Brown,121

Gold, Waltz, & Frank, 2014). At the beginning of each block, participants viewed a screen that122

displayed the set of stimuli that would be used on that block. They were instructed that each123

stimulus had a single correct button press associated with it, and that their goal was to learn the124

correct association using trial-and-error. On each trial in the block, participants viewed a centrally-125

presented stimulus from this set and had up to 1500 milliseconds to press one of three buttons on126

a keyboard to respond (Figure 1A). Participants received binary, deterministic reward feedback127

after each response indicating whether the response was correct for this stimulus. If participants128

failed to respond within 1500ms, the screen indicated “response too slow,” and were coded as129

nonresponses for subsequent analyses. Each stimulus was presented approximately 13 times within130

a block (stimuli were presented as few as 11 and as many as 14 times). Participants learned sets of131

either 3 or 6 images (stimuli) at a time, resulting in two set sizes for analysis. The larger set size132

(6 stimuli) resulted in greater WM load as well as longer delay times between repetitions of the133

same stimulus, and thus were more difficult. Because all stimuli were presented approximately the134

same number of times, the total number of trials per block was either 39 or 78. All blocks had the135

same number of keypress options (3), and the information about any stimulus-key pairing was not136
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informative of any others within or across blocks (i.e., it was not the case in the 3 stimuli blocks137

that each stimulus mapped to a different key). Thus, chance performance was 33%.138

In addition to the set size condition, each block also belonged to one of the three following139

stimulus conditions (Figure 1B):140

• Standard: stimuli are images of different subcategory members belonging to the same cat-141

egory (e.g., vegetables: broccoli, celery, potato), and easily discriminable both semantically142

and visually.143

• Text: stimuli are words printed in black letters on a white background, corresponding to144

subcategory name (e.g., the words “broccoli”, “celery”, “potato”). This condition is designed145

to provide full semantic information as Standard, but lowered visual discriminability within146

stimulus set.147

• Variants: stimuli are different images of the same subcategory (e.g., different images of broc-148

coli). This condition is designed to provide rich visual information, but limited distinct149

semantic information relative to the Standard condition – each image within a set was de-150

signed to call to mind the same word to limit the ability to have unique verbal labels for each151

image.152

One of our primary criteria for choosing the stimuli across conditions was for them to be similarly153

naturalistic and familiar/recognizable to the participants. There is evidence that humans learn154

differently between abstract and naturalistic stimuli (Farashahi et al., 2020). Furthermore, differ-155

ences in familiarity could also impact learning. Stimuli in the Standard condition were based on156

prior studies using the RLWM design (Collins & Frank, 2012), and were taken from ImageNet, a157

crowdsourced dataset commonly used to train the computer vision networks on image classification.158

Variants condition images were also acquired from ImageNet, but chosen to call to mind the159

same word. Based on reported verbal strategies from prior studies using RLWM tasks, we pre-160

dicted that allowing for extraneous visual variance could lead to alternative labeling strategies (for161

example, labeling a broccoli on a farm “farm” and a broccoli on a kitchen table as “table”), so162

we additionally minimized the possibility of additional distinguishing features (e.g., all images of163

broccoli on a plain background). While there is less visual discriminability in the Variants con-164

dition than the Standard one, the images are certainly not perceptually confusable, for they vary165

along lower-level visual dimensions (e.g., broccoli in different orientations, of different size, shades166

of green). Ultimately to keep stimuli naturalistic, we opted to use images that alone, had full167

semantic information (i.e., were individually nameable), but as a group caused interference (i.e.,168

were all associated with the same name).169

With similar motivation, we chose to use Text for a condition that had full semantic information170

while limiting visual information. While it would have been ideal to use images that looked alike but171

depicted different things, we could not think of such visual stimuli while satisfying the naturalistic172

and familiar constraints we imposed on our stimulus conditions. We thus compromised by simply173
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writing the words out (i.e., showing a picture of black letters on a white screen), lowering visual174

information overall without sacrificing semantic information.175

Each block had a unique category (e.g., vegetables, farm animals, clothing items), so a partic-176

ipant would not see, for example, stimuli corresponding to “farm animals” in both the Standard177

and Variants conditions. Which category was assigned to each stimulus condition, and what order178

they were presented in, was counterbalanced across participants, so participants saw different sub-179

sets of the entire stimulus set. The block order of the set size and stimulus conditions were also180

pseudorandomized across participants. Participants completed two blocks per set size x stimulus181

condition as well as one practice and one final block, completing a total of 780 trials over 14 blocks.182

We did not consider the first and last block in any analyses to remove potential effects of practice183

or fatigue, leaving 702 trials for analysis.184

2.2 Experimental Results185

Learning was successful in all conditions, indicated by an increasing proportion of correct responses186

as a function of stimulus iteration (Figure 1C). As in prior studies using the RLWM design,187

participants responded slower in the set size 6 blocks than in the set size 3 blocks. However, a188

two-way repeated measures ANOVA with stimulus condition, set size, and their interaction showed189

that while the difference between the set sizes was significant (p < .001), there was no effect of190

stimulus condition (p = .62) on reaction time, nor an interaction between condition and set size191

(p = .57). Reaction times are not analyzed further, but are shown in Supplementary Figure 6.192

To describe experimental effects on accuracy, we conducted a two-way repeated-measures ANOVA193

with stimulus condition, set size, and their interaction as independent variables, as well as separate194

intercept terms for each participant. There was a significant effect of set size, such that set size195

3 blocks had overall better mean performance (M = .79, SEM = .02) than set size 6 blocks196

(M = .66, SEM = .02, F (1, 58) = 106.2, p < .001, Figure 1C), supporting the involvement197

of WM in learning and replicating prior work using this paradigm (e.g., Collins, 2018). There198

was a significant main effect of condition (F (2, 116) = 43.95, p < .001), such that performance199

in the Variants condition (M = .66, SEM = .02) was significantly lower than both Standard200

(M = .78, SEM = .02, p < .001) and Text conditions (M = .74, SEM = .02, p < .001). Standard201

and Text conditions were not significantly different (p = .18). The p-values for posthoc tests202

are Bonferroni corrected. Finally, there was a significant interaction between condition and set203

size (F (2, 116) = 6.803, p = .002); this was due to a stronger effect of condition in set size 6204

(F (2, 116) = 38.8, p < .001) than set size 3 blocks (F (2, 116) = 8.71, p < .001). This suggests that205

stimuli differences are more critical for learning when learning more stimulus-action associations206

simultaneously.207

While the ANOVA reveals gross overall effects, it neglects the progress of learning across set208

sizes and conditions; to better qualify this experimental effect we conducted a logistic regression.209

For each participant and condition, we investigated whether we can predict trial-by-trial accuracy210

based on the previous number of correct outcomes for that stimulus, the set size, and the delay211
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since last correct. We found results consistent with previously reported studies (e.g., Collins &212

Frank, 2012; Collins et al., 2014), such that the probability of a correct response on the current213

trial was positively related to previous number of correct (as expected from incremental RL-like214

learning), and negatively related to set size and delay in all conditions (as expected from WM215

contributions to learning; predictors are illustrated in Figure 1D).216
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Figure 1: Experiment 1 task and learning curves. A. Behavioral task. Participants learn

through trial and error, with veridical, deterministic feedback, the correct response to each stim-

ulus. B. Example “vegetable” stimuli, for the three different stimulus conditions: Standard, Text,

Variants. Stimulus categories were different for each block, so participants would never see (for

example) a broccoli in multiple learning blocks. C. Learning curves (M ±SEM over participants)

show the proportion of correct choices as a function of the number of times a stimulus has been

encountered within a block (stimulus iteration), for each stimulus condition (color) and set size

(value/saturation). While 11 stimulus iterations are illustrated, some stimuli were presented more

times. D. Logistic regression weights (hyperbolic tangent transformed) for each condition (colors)

and participant (dots; error bars indicate M ± SEM across participants).

2.3 Modeling methods217

While descriptive statistics allow us to qualify the effects of set size and learning for each condition,218

these tests do not allow us to understand how the underlying processes, RL and WM, produce these219

behavioral differences across conditions. For this, we turn to behavioral modeling. Like previous220
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publications using similar tasks and models (e.g., Collins & Frank, 2012; Viejo, Khamassi, Brovelli,221

& Girard, 2015; Jafarpour, Buffalo, Knight, & Collins, 2022), we assume participants’ responses222

depend on both RL and WM processes. We describe the general “RLWM” framework, then consider223

different models that make different condition-specific predictions.224

2.3.1 General model formulation225

In this section, we describe the building blocks of the models we will be testing. We describe the226

basic learning rules for the RL and WM processes and how a policy is derived from each process’s227

representation of stimulus-action associations.228

Learning rules In this section, we discuss the learning rules for the RL and WM processes. We229

refer to the stimulus (s) action (a) value pairs as Q-value for RL process, Q(s, a), as is standard in230

the model free reinforcement learning literature, and the corresponding stimulus-action association231

pairs for WM process as WM, WM(s, a). When we refer to operations that apply to both functions232

interchangeably, we generalize using the term “value function,” which we denote V (s, a).233

RL learning rule. This is the classic Rescorla-Wagner model, in which the observer iteratively

learns the value of each stimulus-action response through trial-and-error feedback. After observing

reward rt, the participant updates the Q-value as follows:

∀s, a Q0(s, a) =
1

Na

Qt+1(s, a)←− Qt(s, a) + α(rt+1 −Qt(s, a)),

where Na is the number of possible actions (3 in our experiment) and α is the learning parameter.234

The larger α, the more informative the current trial is in the Q-value. To allow for learning235

asymmetry (e.g., Frank, Moustafa, Haughey, Curran, & Hutchison, 2007; Niv, Edlund, Dayan,236

& O’Doherty, 2012; Gershman, 2015; Sugawara & Katahira, 2021), we use two different learning237

rates for positive (correct) and negative (incorrect) rewards. We fit models in which both α and238

α− are free parameters, as well models in which α− is fixed to 0 (e.g., Xia et al., 2021; Eckstein239

et al., 2022). In the main manuscript, we report only the models in which α −= 0, for relaxing240

this assumption did not improve model fit and did not change the main results or conclusions241

(Supplementary 6.7.2).242

WM learning rule. The WM observer updates the association value of stimulus-action pairs

immediately to the observed reward, but this “perfect” information is subject to memory decay.

The value association update is as follows:

∀s, aWM0(s, a) =
1

Na

WMt+1(s, a)←− rt+1,

for r = 1, which can be thought of as a Rescorla-Wagner update rule with an α = 1 and α− = 0.

The WM decay is implemented by, on every trial, having all stimulus-action associations decay

towards their starting value:

∀s, aWMt+1(s, a)←− (1− λ)WMt+1(s, a) + λWM0(s, a),
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where λ is the decay rate. With this formulation, WM’s stored values regress to uninformative243

values, WM0(s, a), for items that have been seen longer ago.244

Calculating response probability. We assume that the observer chooses action ai with

probability based on a softmax function:

pV (ai|s) =
eβVt(s,ai)∑3
i=1 e

βVt(s,ai)
,

where β is the inverse temperature parameter and controls the stochasticity in choice, with higher245

values leading to a more deterministic choice of the best value action. Here, we fix β to an arbitrarily246

high number, 100. Fixing β to a high number enforces behavior we find to be a necessary theoretical247

baseline: it simulates behavior that is true to the way WM is theorized (it enforces a close to perfect248

one-back WM policy under low load) whilst still being consistent with the general formulation of249

RL models. Additionally, it is common practice in “RLWM” models (e.g., Jafarpour et al., 2022;250

McDougle & Collins, 2020), and improves interpretability of parameters (i.e., parameter recovery251

is only successful when β is fixed). Vt(s, ai) depends on the given state s, action ai, and process252

(RL vs. WM).253

Perseveration. Models with perservation incorporate the tendency of agents to respond based

on previous actions, irrespective of the current stimulus and reward (e.g., Sugawara & Katahira,

2021).

Vt(s, ai) = Vt(s, ai) + ϕCt(ai),

where ϕ denotes how strongly a participant perseverates in their responses, and Ct(ai) is the choice254

trace vector of action ai. The models in the main text set Ct(ai) = 1 if the choice on trial t − 1255

was ai, and 0 otherwise. (We fit all models without perseveration, and fits were significantly worse256

across models. We additionally allow perseveration choice to be affected by trials more than one257

trial back, with decay parameter τ ; this addition does not approve the fits. Details can be found258

in Supplementary 6.7.3).259

Response policy. The probability of responding action ai given state s, p(ai|s) is a weighted

sum of the contribution from the RL and WM process.

p(ai, s) = ωnpWM(ai|s) + (1− ωn)pRL(ai|s),

where the mixture weight ωn is a value between 0 and 1, corresponding to the WM contribution for260

blocks with set size n. In a fully RL-driven model, ωn = 0; in a fully WM-driven model, ωn = 1.261

We predict that ω6 < ω3 because there is lower WM contribution in higher set size conditions, but262

we do not impose this constraint during model fitting.263

Random responses. We additionally assume that, with proportion ϵ, participants randomly

choose an action. We are agnostic to whether this behavior reflects a response lapse, a random

guess, or greedy exploration. The final response policy at time t, πt is thus

πt(ai|s) = (1− ϵ)p(ai|s) +
ϵ

Na
.
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2.3.2 Models264

In this section, we describe the six models we considered. All models assume that both RL and WM265

are involved in the learning process, but make different assumptions about whether and how each266

of the two processes are affected by stimulus conditions. We did not consider models in which only267

RL or only WM are involved, for neither would be able to capture data across set sizes, let alone268

across conditions (Supplementary Figure 22). First, we test three models in which RL process is269

affected specifically. We test one model in which condition-differences in learning are assumed to270

be a result of different learning rates (RL learning rate). We test alternative models that assume271

confusion within a stimulus set results in noisier learning: either that updating the current stimulus272

accidentally updates other stimuli in the same block (RL credit assignment), or that retrieving the273

values of the current stimulus is confused with other stimuli (RL decision confusion). Second, we274

consider two models in which the WM process is affected specifically, either through differing decay275

(WM decay) or decision confusion (WM decision confusion) across conditions. Finally, we consider276

a model that assumes that the RL and WM processes aren’t changed in isolation based on stimulus277

condition, but the interaction between the two (RL WM weight). This model hypothesizes that the278

observer relies on RL and WM to different degrees, depending on stimulus condition. Alternative279

assumptions, different specifications for perseveration or nonzero negative learning rate α− are280

presented in Supplementary Materials 6.7, but these did not better explain our data than the281

models presented here.282

Condition-specific RL learning rate. Motivated by the observation that stimulus condition283

influences accuracy, we first consider a model which assumes that stimulus condition impacts284

how quickly RL updates Q-values. We implement this assumption by fitting three separate α285

parameters, one for each stimulus condition. We denote the learning parameter for Standard,286

Text, and Variants stimuli as αs, αt, and αv, respectively.287

Condition-specific RL credit assignment. In the “RL credit assignment” observer, we288

test the assumption that the lowered performance in different conditions is not due to lowered289

learning rates, but increased difficulty to distinguish the stimuli which leads to credit assignment290

confusion. Credit assignment confusion occurs when updating Q values not only for the current291

trial’s stimulus, but also for other stimuli, leading to potential future interference between stimuli.292

For example, when a reward is obtained for a given choice and stimulus, the rewarded choice would293

also be credited to other stimuli, although those stimuli may require a different correct action.294

With standard RL and WM learning rules, the observer only updates state-action values for

the current stimulus, si. With credit assignment confusion, all other stimuli in the current block

(which are not relevant to the current trial) are also updated to a lesser degree, parameterized by

weight 0 ≤ η ≤ 1:

∀sj ̸= si : Vt+1(sj , a)←− Vt(sj , a) + αη(rt+1 − Vt(si, a)).

We fit credit assignment confusion parameters to Text and Variants conditions only, denoted295

ηt and ηv, respectively. We did attempt to fit a model with credit assignment confusion in the296
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Standard condition, ηs, and did not include in the main manuscript because parameter recovery297

was not successful for that model; this is likely because a combination of other parameters (e.g.,298

α, β, λ, ϵ) can characterize noise in a way that is behaviorally difficult to distinguish from credit299

assignment alone. In this sense, we assume that any credit assignment confusion in the Standard300

condition would be generally captured by noise parameters, and that the additional confusion in301

the Text and Variants conditions would be captured by the condition-specific parameters. This302

additional confusion is our primary interest, for we are interested in the difference in performance303

across conditions.304

Condition-specific RL decision confusion. In the “RL decision confusion” observer, we305

test the assumption that the lowered performance in different conditions is due to across-stimulus306

decision confusion when the observer is calculating their response policy. In other words, the307

confusion is not in the encoding of the state-action values (like the RL credit assignment model),308

but the retrieval of values when making a decision. Decision confusion is implemented during the309

decision stage, such that all stimuli in the current block that are not relevant to the current trial310

are also used to calculate the response policy for the RL process:311

V ′
t (s, ai) = (1− ζ)Vt(s, ai) + ζ

1

Ns − 1

(∑
¬s

Vt(¬s, ai)

)
, (1)

where Ns is number of stimuli, parameter ζ is a scalar between 0 and 1, and indicates how much312

across-stimulus decision confusion there is. A value of 0 indicates no decision confusion, and a313

value of 1 would indicate full confusion. We fit decision confusion parameters for the Text and314

Variants conditions, denoted ζt and ζv, respectively. Like in the RL credit assignment model,315

we implicitly assume there is no RL decision confusion in the Standard condition, ζs = 0, for316

modeling parsimony and recoverability, or that RL decision confusion is absorbed by other noise317

in that condition. In that sense, again, this model assumes additional processes in the Text and318

Variants conditions, to attempt to capture observed performance drops.319

Condition-specific WM decay In this model, we test the assumption that WM decay is320

solely responsible for performance differences across conditions. Rather than learning the values321

faster in certain conditions, we just remember the associations better. We denote the WM decay322

for Standard, Text, and Variants stimuli as λs, λt, and λv, respectively.323

Condition-specific WM decision confusion This model is the WM analog to the RL324

decision confusion model. In this model, we test the assumption that participants have across-325

stimulus decision confusion when calculating the response policy for the WM process, according326

to Equation 1.327

Condition-specific weight In this model, we test the assumption that different weights be-328

tween the RL and WM processes results in different behavior, rather than condition differences329

resulting from changes in either process. So, when encountering different stimuli, either system330

could be modulated to have a larger or smaller effect. In this model, the weights ωs differ across331

condition and set size, and are denoted with subscript. For example, ω6s corresponds to the RLWM332

weight of a set size 6 Standard stimulus condition. We include the simplifying assumption that the333
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differences across conditions in set size 3 blocks are minimal, and use ω3 for all set size 3 stimulus334

conditions. Thus, the Condition-specific weight model has four ω parameters, ω3, ω6s, ω6t, and ω6v.335

2.3.3 Parameters and estimation336

The parameters for each model, θ are displayed in Table 1. All models we consider contain the337

following fitted base parameters: RL learning rules with positive learning rate α, WM with forget-338

ting rate λ, perseveration with proportion ϕ, response policies which are a weighted combination339

of RL and WM components with a weighted sum (determined by weight ω3 and ω6 for set size340

3 and 6, respectively), and random responses with proportion ϵ. Model-specific parameters are341

presented in the, aptly named, "Model-specific parameters" column.342

For each participant and each model, we maximized the logarithm of the likelihood (LL) of the343

data given the parameters and model log(p(data|θ)), using fmincon in MATLAB with 20 random344

starting points. The largest LL, LL∗, and the associated parameter θ are assumed to be the global345

maximum-likelihood parameter estimates.346

Model Base parameters Model-specific parameters

RL learning rate αs, λ, ϕ, ω3, ω6, ϵ αt, αv

RL credit assignment α, λ, ϕ, ω3, ω6, ϵ ηt, ηv

RL decision confusion α, λ, ϕ, ω3, ω6, ϵ ζt, ζv

WM decay α, λs, ϕ, ω3, ω6, ϵ λt, λv

WM decision confusion α, λ, ϕ, ω3, ω6, ϵ ζt, ζv

RL WM weight α, λ, ϕ, ω3, ω6s, ϵ ω6t, ω6v

Table 1: Model parameters. Free parameters for each model. Base parameters are loosely com-

parable across all models; model-specific parameters are additional ones fit to capture condition-

specific effects.

2.3.4 Model and parameter recovery347

A crucial, but often overlooked, step in interpreting model parameters and in quantitative model348

comparison is making sure parameter values are meaningful and that models are identifiable349

(Nilsson, Rieskamp, Wagenmakers, & Nilsson, 2011; Palminteri, Wyart, & Koechlin, 2017; Wilson350

& Collins, 2019). In order to establish the interpretability of model parameters, one should test351

that the same parameters that generate a data set are the ones estimated through the model pa-352

rameter estimation method. Successful parameter recovery exists when one is able to “recover” the353

same (or similar) parameter values that generated the data.354

Successful model recovery is an important step for making conclusions from quantitative model355

comparisons. Successful model recovery occurs when the same model that generates a data set is356

the model that best fits it (according to your chosen model comparison metrics), when compared357
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to all other models in the comparison set. We obtained reasonable parameter recovery and model358

recovery; details and figures for both analyses are in Supplementary sections 6.4 and 6.5).359

2.3.5 Model comparison360

Because all of our models have 8 parameters, we report model goodness-of-fit by simply comparing361

LL∗, the maximum LL across all runs for a participant and model. In addition to LL∗, we362

compared fits across participants with group Bayesian Model Selection (BMS; Stephan, Penny,363

Daunizeau, Moran, & Friston, 2009; Rigoux, Stephan, Friston, & Daunizeau, 2014). While summed364

LL∗ assumes all participants are generated by the same model, BMS explicitly assumes that365

participants can be best fit by different models. BMS assumes that the distribution of models is366

fixed but unknown across the population, and uses the log marginal likelihoods for each model and367

participant to infer the probability of each model across the group. This method is sensitive to both368

the distribution and magnitude of the differences in log-evidence. From this, we can compute the369

protected exceedance probability (pxp), which is how likely a given model is to be more frequent370

than the other models in the comparison set, above and beyond chance. A lower summed LL∗ and371

higher pxp indicate better model fit to data.372

2.4 Modeling Results373

Both metrics gave similar results, favoring the RL learning rate model over the RL credit assign-374

ment, WM decay, WM decision confusion, and RL WM weight models. The RL decision confusion375

model performed similarly well to the RL learning rate model. We illustrate individual-participant,376

median ∆LL∗s, summed ∆LL∗s, and pxps in Figure 2B.377

Second, we qualitatively compared the models’ ability to generate data similar to that of the378

real data. For example, posterior predictive checks are an important step in assessing model fits,379

particularly for data with sequential trial dependencies (Palminteri et al., 2017); a simple model of380

the weather that predicts today’s weather is the same as yesterday’s may result in high likelihoods381

without being able to actually predict weather patterns. For each participant, we simulated data382

using the MLE parameters for each participant, and find that the qualitative fits to the data (Figure383

2A) reflect the quantitative model comparison; the models that feature either condition-specific384

RL learning rates or condition-specific RL decision confusion provide a better fit to the true data385

than other models. These results suggests that different stimulus conditions affect exclusively the386

RL process, by how efficiently it learns from or uses reward information.387

2.5 Interim conclusions388

In Experiment 1, we asked how limiting discriminability in semantic or visual information across389

stimuli changes people’s ability to learn stimulus-response associations in a load-dependent RL390

task. First, we replicated the set size effect, showing that for all task conditions a load of 6391

stimuli produced worse performance than blocks with only 3 stimuli, indicating WM’s role in task392
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Figure 2: Experiment 1 Modeling Results. A. Learning curves for each condition (color) and

set size (value/saturation) across participants for data (errorbars, M±SEM) and model predictions

(fills, ±SEM). Only the first 11 stimulus iterations are illustrated, but all iterations were used

in modeling. B. Difference in LL scores for each model, relative to the RL learning rate model.

Dots indicate individual participants, black line indicates median, and grey box indicates 95%

bootstrapped confidence interval of the median. Difference of summed ∆LL∗s across participants

and protected exceedance probability displayed for each model. Lower LL∗s and higher pxps

indicate better model fit.
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performance. Second, and to our main question, we found that limiting either discriminable visual393

or semantic information across stimuli detrimented performance. This condition effect interacted394

with load such that it had a larger effect in higher load conditions, suggesting that the condition395

may tax the RL system that is more responsible for behavior in the larger load conditions.396

We used computational modeling to investigate if we could explain the process by which this397

performance detriment occurs, and found that a model that either assumes that people have lower398

RL learning rates or have higher confusion across stimuli when calculating the RL response policy399

was able to capture the data reasonably well qualitatively, and quantitatively better than other400

models. However, all models predict slightly higher performance in the Variants condition set size401

6 relative to human performance (Figure 2). In Experiment 2, we designed an experiment to more402

directly test the contribution of RL in learning, by adding a surprise memory test.403

3 Experiment 2404

Our second experiment was designed to replicate and extend the behavioral and modeling results405

of the first experiment. First, participants completed the same stimulus-response paradigm as in406

Experiment 1. Participants then completed a “Test phase,” after a WM distractor task, designed407

to clear WM. During the Test phase, all stimuli from all Learning phase blocks were presented408

again in random order, and participants responded which of the three response keys they believed409

to be the correct response. No feedback on correctness was given. This phase probed how well410

stimulus-response pairs were learned by a RL process, presumably without the aid of WM.411

3.1 Experimental Methods412

3.1.1 Participants413

Thirty-seven participants (22 female, mean age 21) were recruited through a UC Berkeley online414

site and received course credit for experimental participation. Participants in this experiment415

did not receive any bonus compensation based on performance. We obtained informed, written416

consent from all participants. The study was in accordance with the Declaration of Helsinki and417

was approved by the Institutional Review Board of University of California, Berkeley (IRB 2016-418

01-0820). Seven participants were excluded for psychiatric diagnosis disqualifications, withdrawing419

early, not being fluent in English, or monitor malfunctions in the testing rooms, leaving 30 (19420

female, mean age 21) participants in the final online sample.421

3.1.2 Experimental design422

Participants completed the same stimulus-response learning paradigm, with the same numbers of423

trials and blocks, as in Experiment 1. In addition to this “Learning Phase,” participants additionally424

completed a WM distractor task and a “Test Phase,” which they were not told about ahead of time.425

In the distractor task, participants completed 5 blocks of a N-back task. This task was designed426

16



to tax the WM system, clearing any working memory information about stimulus-response map-427

pings from the Learning Phase, and is not analyzed in main manuscript. More details about this428

task can be found in the Supplementary Materials Section 6.2. It took approximately 10 minutes429

to complete.430

Lastly, participants completed a surprise Test Phase, in which all stimuli from the Learning431

phase blocks were presented again in random order. Because the Test phase was beyond both432

WM capacity (54 associations tested) and maintenance period for most stimuli, this phase probed433

how well stimulus-response pairs were learned by a RL process alone. For each trial, a stimulus434

was presented, participants responded which of the three response keys they believed to be the435

correct response, and no feedback on correctness was given. Each of the 54 unique stimuli from436

the learning block was presented four times, for a total of 216 trials. Only stimuli from the middle437

12 blocks (i.e., excluding stimuli from the first and last block) were included in this test phase438

to limit primacy or recency effects of memory (Murdock Jr., 1962). Because each Learning phase439

block corresponded to a unique category (i.e., a participant would see stimuli corresponding to440

“vegetables” in only one stimulus condition), there should not be any category-specific interference441

between blocks. All trials were completed in a single block.442

3.2 Experimental Results443

Here, we analyze the behavioral results from the Learning phase and Test phase. First, we ana-444

lyze learning phase data as done in Experiment 1 (Fig. 3A, middle). We conducted the repeated445

measures ANOVA, with proportion correct as the dependent variable and set size and stimulus446

condition as independent variables. There was a significant effect of set size (F (1, 29) = 185.1,447

p < .001), condition (F (2, 58) = 24.66, p < .001), and interaction between set size and con-448

dition (F (2, 58) = 11.90, p < .001). For condition, performance in the Variants condition (M =449

.69, SEM = .03) was significantly lower than that of the Standard (M = .79, SEM = .02, p < .001)450

and Text (M = .76, SEM = .02, p = .02) conditions. Performance was not significantly differ-451

ent for Standard and Text conditions p = .53). The interaction was driven by a nonsignificant452

condition effect in set size 3 blocks (F (2, 58) = 2.44, p = .10) but a strong condition effect in453

set size 6 blocks (F (2, 58) = 27.07, p < .001). We then conducted the logistic regression to test454

whether the likelihood of responding correctly on the current trial could be predicted from the455

previous number correct for that stimulus, the set size, and the delay since last correct. We found456

results consistent to Experiment 1 such that the probability of getting a correct response on the457

current trial was positively related to previous number of correct, and negatively related to set458

size and delay (Fig. 3A, right). Reaction time analyses revealed the same pattern of results as in459

Experiment 1: participants responded slower in the set size 6 blocks than in the set size 3 blocks,460

but an ANOVA showed that while the difference between the set sizes was significant (p < .001),461

there was no effect of stimulus condition (p = .11) or an interaction between condition and set size462

(p = .80; Supplementary Figure 6).463

Second, we analyzed the participants’ performance on the Test phase. Collins and others464
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Figure 3: Experiment 2 task and results. A. Learning phase. Left : Task design. Middle:

Proportion of correct choices increases as a function of stimulus iteration for all stimulus and

set size conditions but slower for set size 6, especially in the Variants condition. Right : Logistic

regression. For all three conditions, participants are more likely to select the correct response when

it is a lower set size block, shorter delay, and when they have gotten more correct responses on that

stimulus previously. B. Test phase. Left : task design. Participants viewed all stimuli previously

learned and reported their believed correct response. No correctness feedback was given. Middle:

Proportion correct in training (x-axis) and testing (y-axis) phase for condition (color), showing

individual participants (dots) or M ± sem across participants (boxes). Right : Tortoise and hare

effect: there is a larger deficit in long-term retention (difference in proportion correct (PC) from

train to test) with stimuli learned in set size 3 blocks than set size 6 blocks. This deficit was not

significantly different across conditions.
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(2018) demonstrated an interaction between RL and WM processes for long-term retention of465

the correct stimulus-action pair. Items in lower set size blocks had better performance during466

the Learning phase compared to higher set size blocks, but interestingly, a larger detriment in467

performance in the Test phase. This “tortoise and hare” effect demonstrated a trade off between468

RL and WM process; while WM assists performance during learning, it detriments long-term469

retention of the stimulus-action pairs. For all conditions and set sizes, performance was above470

chance (t(29) > 6.35, p < .001), suggesting long-term retention of stimulus-response associations471

even without explicit instruction to do so. Second, there was a significant positive correlation across472

participants between the proportion correct in the Learning and Test phases (r = .40, p = .03).473

Finally, the difference between performance in Learning phase and Test phase was much larger in474

trials corresponding to stimuli learned in set size 3 blocks than ones learned in set size 6 blocks475

(t(29) = 6.41, p < .001), replicating the tortoise and hare effect, showing interference of WM476

with RL learning. We conducted a one-way repeated measures ANOVA and found no statistical477

difference in the magnitude of this “tortoise and hare” effect across conditions (F (2, 58) = 2.207, p =478

.12). This nonsignificance of magnitude of deficit suggests that the difference in WM used between479

set size 3 and 6 in each condition is nonsignificantly different.480

3.3 Modeling methods481

3.3.1 Replication of Experiment 1482

We first analyzed the Learning phase of Experiment 2 identically to that of Experiment 1. Details483

on the six models, fitting procedure, and model comparison can be found in Section 2.3.2-2.3.5.484

3.3.2 Investigating Test phase485

We additionally investigate model fit by jointly fitting Learning and Test phase data. In other486

words, all data are used to calculate the likelihood of parameter given model parameters and data.487

The likelihood of learning phase data are computed identically to the previous procedure. For488

test phase data, we assume that participants only have access to RL values, not WM association489

weights; thus the likelihood of test phase trials relies only on the Q-values learned during the490

learning phase, which are frozen through the test phase in absence of feedback (Collins, 2018).491

LLs are optimized in the same way as Experiment 1, and model are compared in the same way492

as Experiment 1. We fit the two best fitting models: the condition-specific RL learning rate and493

condition-specific RL decision confusion models.494

We additionally test, for the RL learning rate and RL decision confusion models, the assumption495

that RL and WM processes are not independently updating value in during the learning phase, but496

actually interact during learning. As in Collins (2018), we implement this assumption such that497

WM contributes cooperatively during learning when calculating the RPE used by the RL process:498

δt = rt − (ωnWMt(s, a) + (1− ωn)Qt(s, a)). (2)
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We refer to this set of model as models “with interaction” (e.g., RL learning rate model with this499

modification is the “RL learning rate + interaction” model).500

For all models, we additionally fit a softmax inverse temperature parameter, β, for the Test501

phase, under the assumption that response noise in using RL Q-values will likely differ for each502

participant between Training and Test phase due to failures in long-term retention of stimulus-503

response associations.504

3.4 Modeling Results505

We modeled the data in Experiment 2 in two ways. First, we fit only the Learning phase data,506

as in Experiment 1, to see if we could replicate those results. Second, we jointly fitted parameters507

on Learning and Test phase data, to see if modeling results differed from results when only fitting508

Training phase data.509

Replication of Experiment 1 Modeling results were remarkably consistent with Experiment510

1; the condition-specific RL learning rate model fit the substantially better than most models511

across participants, and similarly as well as the RL decision confusion model. These two models512

were best able to produce model predictions that looked qualitatively similar to that of the actual513

data (Fig. 4A). They were additionally able to capture the data quantitatively the best (Fig. 4B).514
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Figure 4: Experiment 2 modeling results: replication of experiment 1 A. Learning curves

for each condition (legend at top) across participants for data (errorbars, M ± SEM) and model

predictions (fills, M±SEM). Only the first 11 stimulus iterations are illustrated, but all iterations

were used in modeling. B. Difference in LL∗ for each model relative to the RL learning rate model.

Dots indicate individual participants, black line indicates median, and grey box indicates 95%

bootstrapped confidence interval of the median. Difference of summed LL∗s across participants

and protected exceedance probability displayed for each model. Lower LL∗s and higher pxps

indicate better model fit.
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Investigating Test Phase Model validation plots are illustrated in Figure 5. Quantitatively,515

model performance was very similar (lower summed ∆LL∗ and higher pxp indicates better model516

fits to data). RL learning rate summed ∆LL∗ = 0, pxp = .25; RL decision confusion summed517

∆LL∗ = 49, pxp = .23; RL learning rate + interaction summed ∆LL∗ = −44, pxp = .27; RL518

decision confusion + interaction summed ∆LL∗ = −8, pxp = .25).519

Qualitatively, the models that assume an interaction between RL and WM during learning were520

able to capture Test phase data better for the Standard and Text condition (orange and green),521

but models that assume no interaction were able to capture Test phase data better in the Variants522

condition (blue). As a follow up, we considered models that had condition-specific interaction523

strengths, but they were not able to fit the data substantially better than those reported here524

(Supplementary 6.7.5).525
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Figure 5: Exp 2 learning and test phase model validation. Model validation for RL learning

rate and RL decision confusion models without (left two plots) and with (right two plots) an

interaction between RL and WM processes during learning. Model predictions (fill) and data

(error bars) for models jointly fitted on Training (top) and Test phase (bottom) data.

4 Further model investigations526

4.1 Interpreting model parameters527

We investigated the parameter values for the two best-fitting models: the condition-specific RL528

learning rate and the condition-specific RL decision confusion models (individual and group pa-529

rameter values for models fit on Learning phase displayed in Supplementary 6.6).530

We first investigated whether it was reasonable to combine participants across the two experi-531

ments, for the models that were fitted to only Learning phase data. For each model, we conducted532

Welch’s t-tests for each parameter with a Bonferroni correction across parameters. We found for533
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both winning models, no parameters were significantly different across experiments (p > .41). For534

all following analyses, we combine participant parameters across experiments.535

To investigate the differences between condition-specific parameters for each the model, we536

conducted Wilcoxon signed-rank test with a Bonferroni correction across the number of pairwise537

tests. First, we investigated whether the learning rates, αs, across conditions differ in the condition-538

specific RL learning rate model. The learning rate for Variants condition (αv: M = .01, SEM =539

.003) was significantly lower than that of Text condition (αt: M = .03, SEM = .006, z =540

−7.40, p < .001) and Standard condition (αs: M = .04, SEM = .008, z = −6.37, p < .001).541

The difference in learning rates for Standard and Text condition were not statistically significant542

(z = 2.25, p = .07). For the models fit to both Learning and Test phase data in Experiment543

2, the results are largely consistent, finding that learning rate for the Variants (no interaction544

model: M = .01, SEM = .001, interaction model: M = .008, SEM = .0008) condition is lower545

than that of Standard (no interaction: M = .04, SEM = .03, z = −4.37, p < .001; interaction:546

M = .04, SEM = .02, z = 4.41, p < .001) and Text (no interaction: M = .01, SEM = .003, z =547

−2.99, p = .008; interaction: M = .02, SEM = .004,z = 3.38, p = .002) conditions. However,548

models that were fitted on both phases also found a statistically significant difference between549

Text and Standard conditions (no interaction: z = 2.77, p = .02; interaction: z = 2.79, p = .02).550

For the RL decision confusion model, we found that the decision confusion for the Variants551

condition (ζv: M = .44, SEM = .02) was significantly higher than that of the Text condition552

(ζt: M = .22, SEM = .03, z = 6.02, p < .001). This effect is also true for the models fitted on553

Learning and Test phase of Experiment 2; decision confusion is greater in the Variants condition554

than the Text condition in both the models that assume no interaction between RL and WM555

(Variants: M = .36, SEM = .04, Text: M = .18, SEM = .04, z = 2.95, p = .003) and those that556

do (Variants: M = .40, SEM = .04, Text: M = .20, SEM = .04, z = 3.38, p = .001).557

4.2 Alternative models558

As in all modeling papers, we cannot possibly sample all possible models of this data. In our final559

analysis, we test two additional models that embody more complex hypotheses, as a control. We560

fit just the Learning phase data, and do not assume any interaction between RL and WM during561

learning.562

Condition-specific RL learning rate and WM decay Our previous models assumed that563

only one process was affected by stimulus condition. In this model, we test the assumption that both564

processes are affected. To minimize additional complexity, we consider the model that lets the two565

most likely parameters from each process be condition dependent; specifically, this model assumes566

that RL learning rate and WM decay both depend on stimulus condition. Theoretically, this567

model allows us to test the assumption that both processes may differently but jointly contribute to568

differences in behavior. This model has the following 10 parameters αs, αv, αt, λs, λv, λt, ϕ, ω3, ω6, ϵ.569

Superfree The “Superfree” model fits each condition entirely separately. Thus, it is extremely570

unconstrained, overparameterized, and lacks theoretical justification on its own. However, it pro-571
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vides a qualitative upper bound for the explainability of all models considered in this paper. We572

consider this model an important metric to use when considering the goodness-of-fit of models573

during model validation. This model has a total of 21 parameters, consisting of 7 parameters for574

each condition: α, λ, ϕ, ζ, ω3, ω6, ϵ.575

4.2.1 Model comparison and results576

For model comparison with the new additions, we focus on the previous winning models, as well as

the previous best candidate model where WM parameters were condition dependent. Specifically,

we select 1) RL learning rate and 2) RL decision confusion, and 3) the WM decay model. Because

the models considered in this section have different numbers of parameters, we use corrected Akaike

Information Criterion (AICc; Hurvich & Tsai, 1987) to quantitatively compare model goodness-of-

fit. Like AIC (Akaike, 1972), AICc penalizes models with more parameters, using parameters as a

proxy for model flexibility (and additionally corrects for potentially low trial numbers):

AICc = −2LL∗ + 2k +
2k(k + 1)

Ntrials − k − 1

where k is the number of parameter and Ntrials is the number of trials. We chose to use AICc verses577

other model comparison metrics, because it provided us the best model recoverability, although578

it penalizes parameters less strictly than Bayesian Information Criterion (BIC). We report the579

median and mean of the difference between the AICc of one model and the RL learning rate580

model (∆AICc); larger values provide larger support in favor of the RL learning rate model.581

In addition to reporting the protected exceedance probability of each model pxp, we report the582

expected posterior probability of each model, denoted expr. These two metrics provide us a more583

heterogeneous interpretation of model goodness-of-fit, such that different models may be superior584

for different subsets of participants. All quantitative results for Experiment 1 and 2 are reported585

in Table 2 and Table 3, respectively.586

Our results in this section are consistent with our other modeling results, for both experiments587

and for all model comparison metrics. First, as shown previously, both RL-only models individually588

fit better than the WM-only models in both experiments. Second, they individually fit better than589

the new model that assumed both RL and WM were affected by stimulus condition, suggesting that590

assuming condition-dependent WM changes does not provide any additional explanatory power to591

assuming only RL is affected (though, results of model recovery may weaken the interpretation of592

this result; Fig 18, 19) . Third, the model that assumed both RL and WM were both affected fit593

better than the WM-only model, suggesting that condition-specific RL modulation is key to fitting594

human behavioral data.595

Interestingly, the RL-only models are not favored over the Superfree model in either experiment.596

These quantitative results do not reflect a simple overfitting; the Superfree model is not the best597

fitting model for data simulated by other models (i.e., model recovery is successful for our chosen598

model comparison metrics. Figure 18), and is qualitatively superior at capturing behavior in the599

set size 6, Variants condition (Figure 25). While the Superfree model seems to be capturing some600
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aspects of behavior that others model are not, the overparameterization of the model (indicated by601

poor parameter recovery, Figure 16) makes it difficult to understand, in a meaningful way, why. On602

the other hand, the RL learning rate model still provides a superior fit for a nontrivial proportion603

of participants (Experiment 1 / 2: expr = .31 / .33), suggesting that it is a competitive model,604

whilst still being interpretable.605

RL learning RL decision
WM decay

RL learning rate
Superfree

rate confusion + WM decay

pxp 0.21 0.01 0.00 0.00 0.77

expr 0.31 0.18 0.04 0.08 0.39

mean(∆AICc) 0 -1 8 0 -4

med(∆AICc) 0 1 7 1 2

Table 2: Experiment 1 quantitative model comparison. Protected exceedance probability

(pxp), expected posterior probabilities (expr), mean AICc differences relative to RL learning rate

(mean(∆AICc)), and median AICc difference (med(∆AICc)). Positive AICc values indicate that

RL learning rate provides a better fit to the data.

RL learning RL decision
WM decay

RL learning rate
Superfree

rate confusion + WM decay

pxp 0.30 0.04 0.04 0.05 0.56

expr 0.33 0.09 0.04 0.14 0.39

mean(∆AICc) 0 1 7 1 -1

med(∆AICc) 0 3 3 2 0

Table 3: Experiment 2 quantitative model comparison. Protected exceedance probability

(pxp), expected posterior probabilities (expr), mean AICc differences relative to RL learning rate

(mean(∆AICc)), and median AICc difference (med(∆AICc)). Positive AICc values indicate that

RL learning rate provides a better fit to the data.

5 Discussion606

In this study, we investigated how the type of information across a stimulus set affected learning.607

Participants learned the correct response to stimuli that had different levels of discriminability rel-608

ative to other stimuli in the same block. In behavior across two experiments, we show that,when609

there are more items to learn about concurrently, performance suffers minimally in the Text con-610

dition relative to the Standard condition, but substantially in the Variants condition.611

Through computational modeling, we found that the differences in learning behavior across612
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stimulus conditions were driven by deficits in specifically the RL process. The models that best613

predicted behavior was the one that either assumed that, across conditions, the RL learning rate614

changed or that there was confusion in the RL system at the decision stage. These models fit615

better than those that assumed stimulus condition affected credit assignment in RL, WM decay,616

decision confusion in WM, or the weight between RL and WM. Additionally, models that assumed617

the RL was alone affected fit better than a model that assumed both RL and WM were affected618

by stimulus condition.619

What could be causing the differences in learning across the two lowered-discriminability stim-620

ulus conditions? Perhaps there is a preference for the modality of stimulus. Perhaps the deficit in621

the Variants condition was driven by a lack of semantic distinctness. Many RL studies actively se-622

lect non-nameable stimuli with the (often implicit) goals of targeting putatively implicit processes623

(Frank, Seeberger, & O’Reilly, 2004; Daw et al., 2011) and limiting the contributions of other, more624

explicit cognitive processes. Consequently, they rely on the hypothesis that stimulus information625

in the semantic domain may impact learning, and in particular the balance of RL processes and626

higher level processes such as inference or memory. In contrast to that interpretation, our results627

suggest that the semantic distinguishability of the stimuli affects RL itself, not a different process628

and not its interaction with another process. Our results are consistent with that of Radulescu and629

others (2022), who more directly tested nameability of stimuli on learning. Like us, they found630

that more nameable stimuli were associated with higher RL learning rates, and that the effect of631

nameability on performance was more apparent in larger set size conditions. This interpretation632

is consistent with the results in the Text condition as well. Because stimuli were still semantically633

discriminable, performance on the Text stimulus condition was not significantly worse than that634

of the Standard stimulus condition.635

In contrast to the RL process, our computational results suggest a lack of impact of stimulus636

condition on the WM process. Perhaps this is due to sufficient information being available to637

WM regardless of stimulus condition. Let’s consider the Variants condition, in which a lack of638

semantically distinct information across stimuli does not hurt learning behavior. In other words,639

there was sufficient visual information between stimuli that WM processing was not affected. This640

explanation seems feasible given the research on WM for visual stimuli. The visual WM literature641

has demonstrated that, despite WM being information-constrained, people are able to learn and642

prioritize information in WM that is most relevant to performance (e.g., Yoo, Klyszejko, Curtis, &643

Ma, 2018; Bays, 2014; Klyszejko, Rahmati, & Curtis, 2014; Emrich, Lockhart, & Al-Aidroos, 2017;644

Sims, 2015), even when stimuli are extremely simple and non-verbalizable (e.g., oriented lines, dots645

in space). Perhaps prioritization of relevant information would be easier with naturalistic stimuli;646

WM performance for naturalistic stimuli demonstrated to be better than with simple stimuli (Brady647

et al., 2016), and even more so for objects familiar to participants (Starr, Srinivasan, & Bunge,648

2020, even when doing a simultaneous verbal task, to ensure verbal WM is not assisting). Our649

results and this literature together suggest that, unlike RL, WM can learn actions associated with a650

stimulus set with low semantic discriminability, as long as there is high visual discriminability (and651
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vice versa). In other words, WM is able to discriminate stimuli and maintain stimulus-response652

associations equally well with only visual or semantic information. It is important to note, though,653

that while we designed these stimulus sets with visual and semantic modalities in mind, we did654

not quantify the difference between discriminability across conditions. Thus, it is possible that our655

interpretation of how visual vs. semantic information affects processing may be overly simplified.656

What other processes could be causing the differences in learning in the RL process across657

stimulus conditions, beyond a simple modality preference? It is known that learning a category658

structure becomes more difficult with increased similarity of exemplars between categories (Love,659

Medin, & Gureckis, 2004; Nosofsky, 1986) and increasing number of dimensions required to distin-660

guish categories (Nosofsky, Palmeri, & McKinley, 1994; Shepard, Hovland, & Jenkins, 1961). This661

difficulty is apparent in the Variants condition, in which participants had to distinguish between662

stimuli based on relatively low-level visual differences that are not often of ecological importance.663

This is in contrast to the Text condition, in which stimuli are so easily discriminable due to the664

association of the word with its meaning – a relatively automatic association, as seen in the well-665

replicated Stroop task (1935) – despite having relatively similar low-level visual characteristics666

across stimuli. In the Variants condition, unlike the Text condition, what features were important667

to pay attention to itself became something that needed to be learned (e.g., Leong, Radulescu,668

Daniel, DeWoskin, & Niv, 2017), and likely affected behavior. For example, “learning traps” can669

occur in behavior (Rich & Gureckis, 2018), due to selective attention, simplification, or dimension-670

ality reduction (Nosofsky et al., 1994; Goodman, Tenenbaum, Feldman, & Griffiths, 2008). The671

poor performance in the Variants condition could have been because the relevant discriminating672

features in the Variants condition (e.g., luminosity, absolute size, orientation of object) are, in the673

other two experimental conditions and often in real life, trivial compared to object identity – your674

value assessment for an apple doesn’t depend on how bright the room is. The combination of inter-675

ference (due to interleaved condition blocks) and a learning trap (previous experience within and676

beyond the experiment indicating these low-level features are unimportant) could have resulted in677

difficulty successfully using these features to discriminate between stimuli for RL. Other studies678

corroborate this conclusion, finding stimulus type (e.g., naturalistic stimuli learned better than679

abstract stimuli; Farashahi et al., 2020) and response “state” (e.g., motor responses learned better680

than stimulus responses; Rmus & Collins, 2020) affect learning. Regardless of exact cognitive681

mechanism at play, these results demonstrate the importance of considering how a learning state682

is defined.683

Our results have strong implications for understanding the neural circuits that support flexible684

learning. Previous research has focused on clarifying how the brain integrates past choice and685

reward history to make a choice given a stimulus, with little consideration to the inputs of this686

computation - such as the stimuli. Past findings have shown that multiple distinct neural systems687

contribute to learning. Reinforcement learning computations appear to be implemented in cortico-688

basal ganglia loops (Alexander, DeLong, & Strick, 1986; Haber, 2011; Collins & Frank, 2014), with689

striatum playing a crucial role in supporting iterative, reward-dependent learning (e.g., McClure,690
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Berns, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Frank et al.,691

2004; Frank & O’Reilly, 2006). Prefrontal cortex activity also reflects reward prediction errors in692

feedback-based learning tasks (e.g., Barto, 1995; Schultz, Dayan, & Montague, 1997; Shohamy et693

al., 2004; Daw et al., 2011), but is typically thought to be more related to flexible goal-directed694

behavior (e.g., Hampton, Bossaerts, & O’Doherty, 2006; Valentin, Dickinson, & O’Doherty, 2007).695

Specifically, there has been evidence that PFC function supports WM in the context of learning,696

in parallel to subcortical RL (Collins & Frank, 2012; Collins, Ciullo, Frank, & Badre, 2017).697

While there is a growing understanding of the multiple neural mechanisms that support learning,698

and in particular the RL circuits in the brain, the inputs to this network are not often carefully699

considered - RL computations assume known stimuli, actions, and rewards as inputs to learn a700

policy (Rmus, McDougle, & Collins, 2021). Here, our work shows that the inputs, in particular701

the state space, matter: the nature of the stimuli impacted RL computations, slowing learning and702

potentially increasing choice confusion. It would be interesting in future research to do network-703

level modeling to understand how this behavior may arise from more diffuse/overlapping input704

representations.705

Neuroscientific research in RL contrasts with that of WM, which has spent a considerable706

amount of effort investigating how stimulus information affects WM representations in the brain.707

Namely, neuroscientific research has demonstrated that WM in the brain is highly distributed, and708

that the brain areas involved vary depending on the type of information being maintained (for709

review, see Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017). For example, in addition710

to the prefrontal cortex, retinotopic maps in occipital and parietal cortices are related to the711

WM maintenance of visual information (e.g., Harrison & Tong, 2009; Riggall & Postle, 2012).712

However, despite neural WM representations being represented through sensory cortices, WM713

still behaves similarly in the context of learning and decision making, where the conjunction of714

stimuli and correct choices is the most important information to be maintained. Perhaps this715

associative, higher-level information is successfully represented in the PFC, regardless of specific716

stimulus information. Future research with brain imaging could shed more light on this.717

There are, of course, limitations to our results. First, while our model fits are reasonable, there718

are still some qualitative deviations in our model validation and the data we collected. In particular,719

learning performance in the Variants condition in set size 6 was lower than the RL learning rate720

model predictions. Perhaps learning detriments in the Variants condition is a combination of721

other, unconsidered processes interacting with either RL or WM. There has been ample research722

that computationally, behaviorally, and neurologically demonstrate that other processes interact723

with RL and/or WM. For example, episodic memory interacts with memoranda maintained in724

WM (e.g., Hoskin, Bornstein, Norman, & Cohen, 2019)and choice in RL tasks (e.g., Bornstein725

& Norman, 2017). Attention also affects both WM (e.g., Chun, Golomb, & Turk-Browne, 2011;726

Souza, Thalmann, & Oberauer, 2018) and RL (e.g., Farashahi et al., 2017; Leong et al., 2017;727

Niv et al., 2015). While it would be lovely to be able to study all these processes in tandem, it is728

simply out of the scope of this project; the design of our experiment would likely not allow different729
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processes to be distinguished behaviorally or computationally.730

Second, and more critically, we were not able to conclusively distinguish whether it was lower731

learning rate or increased across-stimulus confusion during the RL response policy calculation.732

Perhaps the experimental design is too simple to distinguish the choice noise that occur from both733

cases. However, these “RL learning rate” and “RL decision confusion” models are distinguishable734

according to model recovery (Supplementary 6.5), so it is not simply that they make similar735

predictions. Additionally, these results do not suggest just a simple increase in noise, since other736

models that also result in increased behavioral noise (i.e., RL credit assignment, WM decay, and737

WM decision confusion models) do not fit the data quantitatively or qualitatively as well. Thus,738

our results do strongly suggest an impact on specifically the RL process. Understanding the exact739

nature of that impact will require additional study, likely with different paradigms.740

Our two experiments were conducted in fairly different demographics and experimental environ-741

ments: Experiment 1 was conducted online on MTurk and Experiment 2 was conducted in person742

in an undergraduate population. Despite subtle differences in behavior across the two experiments743

(namely, the difference in statistical significance of condition differences in set size 3 blocks), we744

find remarkable consistency in behavior, model rankings, qualitative goodness of fits of winning745

models, and estimated parameters across experiments. Thus, we see the two experiments as a746

broad replication of results as a sign of robustness of the findings.747

Overall, this study replicates results demonstrating the importance of both RL and WM in748

the study of learning. This study provides evidence that stimulus matters in learning, potentially749

pointing to the importance of semantic information in learning. We find an interesting result that750

condition differences only affected the RL process, while the WM process was largely spared. This751

paper strongly demonstrates the importance of considering how a learning state is defined. Future752

research should continue to investigate how different stimuli/states affect learning and, at the very753

least, consider how the experimental choice of stimuli affects learning behavior.754

Data and code availability. Participant and simulated data are available at https://osf.io/f4hst/.755

Plotting and analysis code are available at https://github.com/aspenyoo/RLWM_stim_discrim.756

None of the experiments were preregistered.757
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6 Appendix960

In the Supplementary Materials, we include additional analyses that broadly support the main961

text. We include details on participant reaction times on the Learning phase, N-back distractor962

task, qualitative differences in error types between the two winning models, parameter recovery,963

model recovery, and alternative models that were tested. In the alternative models, we included964

analyses of RL, WM, and RLWM models; whether model goodness-of-fit changes with a fixed965

or fitted perseveration rate and negative learning rate; and whether perseveration choice trace is966

greater than one trial back.967

6.1 Reaction times968

Plotted below are the individual subject (dots) and group mean (bars) reaction times in seconds,969

split by stimulus condition and set size.970

3
6

Vari.Stand. Text

Figure 6: Subject Reaction Times by Experiment. Mean (bar) and individual participant

(dots) reaction times for each condition, for the learning phase of Experiment 1 (left) and Experi-

ment 2 (right). Reaction times were not used as a means of exclusion for either experiment.

6.2 N-back distractor task971

The first block was a practice block with N=2, then the following four blocks incrementally in-972

creased from N=2 to N=5. Each block had on average 40 trials, and the stimulus shown on973

each trial was a colored rectangle; potential rectangle colors were common and distinct from974

one another (e.g., blue, yellow, pink, black, green). Code for the N-back task can be found at975

https://github.com/AlexanderFengler/ExperimentDesign_NBackTask.976
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Figure 7: N-back task. Left : task design. Participants viewed a series of colors and made a

key press every time the color N trials ago was the same as the color of the current block. This

illustration demonstrates all correct responses on a N = 2 back task. Right : d′ decreases a function

of N , indicating worse performance with increasing set size.

6.3 Qualitative difference between models: error types977

We found that the models that assumed that either there was a condition-specific effect on RL978

learning rate or a condition-specific effect on RL decision confusion were able to fit the data best.979

While the goal of our paper is not to find one model that explains all datasets we collected, it is980

still an interesting question to ask what the differences are between participants best fit by each981

of the models. In this section, we highlight one qualitative difference between the two winning982

models.983

To investigate qualitative differences between models, we analyzed the key press errors. Unlike984

learning curves, the two models should generate different predictions on error types. For the RL985

learning rate model, errors are primarily driven by a lower rate of learning, so errors should be986

randomly distributed across incorrect keys. On the other hand, if people are confusing stimuli at987

the decision stage, errors should not be random. Specifically, the RL decision confusion model988

should predict that errors would be skewed toward the key presses that are rewarded in other989

stimuli.990

For all set size 3 blocks, there was an imposed structure such that there was a key for which991

two images were correct, a key for which one image was correct, and a key for which no images992

were correct. (The correct keys were counterbalanced across blocks.) Because the correct answers993

were not evenly distributed across key presses, we were able to investigate if errors are random or994

reflect the distribution of correct keys across all trials (i.e., independent of current stimulus). We995

cannot do this analysis on set size 6 blocks, since each key had 2 images each associated with it.996

For each participant, we split up errors by whether the correct answer was the key that was997

correct for two stimuli (which we will refer as the “2” key) or if the correct answer was correct for998
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only one stimulus (the “1” key). We then calculated the proportion of the incorrect key presses999

that were correct for a different stimulus (incorrectly pushing the “1” or “2” key), versus a key1000

that was never rewarded (the “0” key). If errors are random, as predicted by the RL learning rate1001

model, this proportion would be around 0.5. If errors result from decision confusion, participants’1002

error should be biased toward stimuli rewarded in other trials. However, there are other reasons1003

that decisions would be biased toward stimuli rewarded in other trials (e.g., a general avoidance1004

of never-rewarded key). If errors are truly a result of decision confusion, there should be higher1005

confusion in trials in which 1 is correct but 2 is pushed, than trials in which 2 is correct but 1 is1006

pushed.1007

For visualization, we grouped the participants by whether they were better fit by the RL1008

learning rate or RL decision confusion model (i.e., which model had a higher LL*). In Experiment1009

1, 35 participants were best fit by the RL learning rate model, and 24 best fit by the RL decision1010

confusion model. In Experiment 2, 19 participants were best fit by the RL learning rate model,1011

and 11 best fit by the RL decision confusion model. Proportion of error types for both Learning1012

and Test phase are illustrated in Figure 6.1013

For both phases, we conducted a two-way ANOVA for each group of participants, to investigate1014

whether the error types were different according to condition (Standard, Text, Variants), correct1015

key (2 or 1), and interaction between the condition and correct key. For the RL learning rate1016

group, in both Learning and Test phase, we found no significant main effect of condition, correct1017

key press, and no significant interaction. Preference for key rewarded in other trials in Learning1018

(t(53) = 7.30, p < .001.M = .60, SEM = .01) and Test (M = .64, SEM = .02, t(18) = 6.59, p <1019

.001) phase was significantly different than chance.1020

For participants best fit by the RL decision confusion model, there was a significant main effect1021

of correct key press in both Learning (F (1, 34) = 25.01p < .001) and Test phase (F (1, 34) =1022

15.05, p < .001). There was no main effect of condition or interaction between condition and1023

correct key press. In the Learning phase, there was a greater bias toward other rewarded keys in1024

trials when the correct answer was 1 (M = .74, SEM = .03) than 2 (M = .60, SEM = .01), and1025

both were significantly different than chance (t(34) > 7.11, p < .001). In the Test phase, both were1026

significant prefer rewarded keys in other trials, but greater bias toward rewarded keys when correct1027

answer was 1 (M = .78, SEM = .04, t(10) = 7.44, p < .001) than 2 (M = .56, SEM = .02, t(10) =1028

3.03, p = .01).1029

Model predictions do not successfully capture qualitative data patterns. Neither of the models1030

are able to capture the avoidance of the unrewarded key in both phases, suggesting there is another1031

process at work we did not include in the model. The RL decision confusion model is able to capture1032

the qualitative effect of greater bias in “1” trials over “2” trials in Learning phase, but not in Test1033

phase. Perhaps the RL decision confusion is able to capture greater bias in early learning, but1034

stimulus confusion is lessened by late learning Q-values (which the test phase is based on).1035
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Figure 8: Error types by winning model. The proportion of incorrect key presses that were

rewarded for other stimuli, based on how many stimuli shared the same key press (x-axis). Ran-

domly responding between the two incorrect keys is shown with the dashed black line; above chance

means a preference toward the key rewarded for a different stimulus. M ±SEM data (error bars)

and model predictions (fills) for Learning (left; both experiments) and Test (right; Exp 2) phase.

6.4 Parameter recovery1036

In order to establish the interpretability of model parameters, one should test that the same1037

parameters that generate a data set are the ones recovered through the model parameter estimation1038

method (Wilson & Collins, 2019). Successful parameter recovery exists when the parameter values1039

that maximize the likelihood of the data given the model parameters are close to the parameter1040

values that generated the data. Successful parameter recovery is necessary to interpret estimated1041

parameter values.1042

For each model, we generated parameters by sampling the fitted parameter vectors from par-1043

ticipants across both experiments. We sampled 50 participants without replacement. Our goal1044

here was to use parameter values that best reflect the regime of the parameter space that matches1045

data we are interested in. We also completed parameter recovery by sampling parameters from a1046

nonparametric distribution informed by the fitted parameter values, rather than using the exact1047

values. Because there are arbitrary decisions required to define this distribution, we did not include1048

the results here. However, the results are qualitatively the same.1049

For each model and simulated participant, we simulated data with the sampled parameters, then1050

estimated parameters using the same model fitting methods described in the main text. Finally,1051

we plot the true and estimated parameters against one another. For each plot, values clustered1052

along the diagonal indicate successful parameter recovery.1053
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Figure 9: Parameter recovery plots for condition-specific RL learning rate model. Each subplot

plots the true parameters (x-axis), which generated data, against the recovered parameter values

(y-axis), estimated using MLE. Dots are individual simulated participants.

-6 -4 -2 0
-6

-4

-2

0

0 0.5 1
0

0.5

1 v

0 0.5 1
0

0.5

1 t

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.2 0.6 1
0.2

0.6

1

0 0.5 1
0

0.5

1 3

0 0.4 0.8
0

0.4

0.8 6

-15 -10 -5 0 5
10-3

-15

-10

-5

0

5
10-3

RL credit assignment

true parameters

es
tim

at
ed

 p
ar

am
et

er
s

log(    )

Figure 10: Parameter recovery plots for condition-specific RL credit assignment model. Each

subplot plots the true parameters (x-axis), which generated data, against the recovered parameter

values (y-axis), estimated using MLE. Dots are individual simulated participants.
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Figure 11: Parameter recovery plots for condition-specific RL decision confusion model. Each

subplot plots the true parameters (x-axis), which generated data, against the recovered parameter

values (y-axis), estimated using MLE. Dots are individual simulated participants.
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Figure 12: Parameter recovery plots for condition-specific WM decay model. Each subplot plots

the true parameters (x-axis), which generated data, against the recovered parameter values (y-

axis), estimated using MLE. Dots are individual simulated participants.
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Figure 13: Parameter recovery plots for condition-specific WM decision confusion model. Each

subplot plots the true parameters (x-axis), which generated data, against the recovered parameter

values (y-axis), estimated using MLE. Dots are individual simulated participants.
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Figure 14: Parameter recovery plots for condition-specific RL WM weight model. Each subplot

plots the true parameters (x-axis), which generated data, against the recovered parameter values

(y-axis), estimated using MLE. Dots are individual simulated participants.
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Figure 15: Parameter recovery plots for condition-specific RL learning rate + WM decay model.

Each subplot plots the true parameters (x-axis), which generated data, against the recovered

parameter values (y-axis), estimated using MLE. Dots are individual simulated participants.
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Figure 16: Parameter recovery plots for superfree model. Each subplot plots the true parameters

(x-axis), which generated data, against the recovered parameter values (y-axis), estimated using

MLE. Dots are individual simulated participants.

6.5 Model recovery1054

Model recovery is an important step before making conclusions from a quantitative model com-1055

parison (Wilson & Collins, 2019). Successful model recovery occurs when the same model that1056

generates a data set best fits it (according to your chosen model comparison metrics), when com-1057

pared to all other models in the comparison set.1058
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For each model, we generated 50 simulated participants’ data from the parameter values fitted1059

from 50 participants, randomly sampled without replacement from both experiments. (We use the1060

same simulated participants’ data for parameter recovery). We then fit every model to each of of1061

these (nModels x 50) simulated participants, using the same fitting methods as described in the1062

main text.1063

We compared model goodness-of-fit using corrected Akaike Information Criterion (AICc), Bayesian

Information Criterion (BIC), and expr. AICc and BIC both penalize models with more parameters,

and BIC penalizes more strictly:

AICc = −2LL∗ + 2k +
2k(k + 1)

Ntrials − k − 1

BIC = −2LL∗ + k logNtrials,

where k is the number of parameter and Ntrials is the number of trials.1064

The measure expr is calculated using BMS spm, which explicitly assumes that the participants1065

can be fit by different models. This value is expectation of the posterior probabilities of each1066

model.1067

Successful model recovery occurs when the model that best fits a simulated data set is the1068

same model that generated that data set. For example, if all 50 participants generated by the1069

condition-specific RL learning rate model are best fit by the condition-specific RL learning rate1070

model, there is successful model recovery.1071

For the most part, we consider our results successful model recovery (Figure 17). However,1072

these results also indicate the RL learning rate, WM decay, and RL WM weight models are a bit1073

more flexible than others, demonstrated by their ability to best capture data sets generated from1074

other models. These results suggest that model comparisons favoring these three models may be1075

do to model flexibility, rather than a genuine reflection of the underlying cognitive process. In our1076

experimental data (see main manuscript), we do indeed find that the RL learning rate model fits1077

the data best. However, because 1) we do not find that WM decay or RL WM weight models fit1078

the data as well, and 2) the RL decision confusion model is able to fit the data comparably well to1079

the RL learning rate model, we believe our interpretation of the results (i.e., that RL is specifically1080

affected, but not committing to how) is still valid.1081
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Figure 17: Model recovery when using LL∗ and expected probability using BMS SPM (expr), for

six main models with same number of parameters. Successful model recovery is indicated by a

majority of models falling on the diagonal. Both metrics provide good model recovery, although

expr is a bit better.

Our model comparison including the additional two models (RL learning rate + WM decay,1082

superfree) are not as simple, due to the relatively high confuseability of the RL learning rate1083

model and the RL learning rate + WM decay model (Figure 18). We did an additional model1084

recovery analysis between just these two models, with 500 simulated datasets, 50 parameter sets1085

each simulated 10 times (Figure 19). Although the majority tends in the desired direction, the1086

simpler RL learning rate model is able to account for much of the more complex RL learning rate1087

+ WM decay model. Thus, our model comparison results between these two models should be1088

taken with a grain of salt.1089
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Figure 18: Model recovery when using AICc, BIC, and expected probability using BMS SPM

(expr). Successful model recovery is indicated by a majority of models falling on the diagonal.

These results generally convey reasonable model recovery, for all models except the RL learning

rate + WM decay model. AICc and expr provide better recovery than BIC.

AICc

422

78

237

263

BIC

499

1

437

63

expr

497

3

172

328

0

100

200

300

400

500

RL learning rate

RL learning rate

RL learning rate

+ WM decay

RL learning rate
+WM decay

true model

w
in

ni
ng

 m
od

el

RL learning rate

RL learning rate

+ WM decay

RL learning rate

RL learning rate

+ WM decay

Figure 19: A follow up model recovery with more simulated data (independent from earlier

datasets), with just the "RL learning rate" and "RL learning rate + WM decay" models, which

had the greatest confusability in earlier model recovery plots. No metric is able to capture a desired

level of model recovery, although AICc and expr are able to capture the correct directionality.

6.6 Parameter values1090

In this section, we plot the individual and group parameter values for the two winning models: the1091

condition-specific RL learning rate model (Figure 20) and condition-specific RL decision confusion1092

model (Figure 21).1093
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Figure 20: Parameter values (dots: individual participants. error bars: M ± sem across par-

ticipants) for the condition-specific RL learning rate model for Experiment 1 and Experiment 2.

Outliers for log(αv) not illustrated in plot (Exp 1: -21.66; Exp 2: 22.63). The p-values of a

Wilcoxon rank sum test comparing the two participant groups, before any multiple comparisons

corrections, displayed on the top left of each subplot.
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Figure 21: Parameter values (dots: individual participants. error bars: M ± sem across partici-

pants) for condition-specific RL decision confusion model for Experiment 1 and Experiment 2. The

p-values of a Wilcoxon rank sum test comparing the two participant groups, before any multiple

comparisons corrections, displayed on top left of each subplot.

6.7 Alternative Models1094

We tested six main models in the manuscript with the following condition-specific differences: RL1095

learning rate, RL credit assignment, RL decision confusion, WM decay, WM decision confusion,1096
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and weight between RL and WM process contributions. There are of course an infinite amount of1097

other models that we could have tested. This section summarizes related models that we fitted,1098

that may be of interested to the reader. We divide this section into three parts. First, we display1099

the results of models with only an RL component, only a WM component, and standard RLWM1100

models without condition-dependencies. These models are common to report in similar studies,1101

but were not reported in our main manuscript because they are obviously poorly fitting models.1102

Second, we use factorial model comparison to test whether the goodness of fit for the eight main1103

models we fit in the main manuscript vary with/without perseveration, and with/without a fitted1104

negative learning rate, α−, parameter. There are published studies suggesting the assumptions we1105

included in the main manuscript were reasonable, but we still chose to test them directly. Third,1106

we test if our assumption of 1-back perseveration (i.e., the time decay of perseveration) affects our1107

modeling results, by softening this assumption. Fourth, we show model validation plots for the1108

additional models considered in the main manuscript: the RL learning rate + WM decay model and1109

the Superfree model. Finally, we show model validation plots for the additional models considered1110

in Experiment 2: the RL learning rate and RL decision confusion models with condition-specific1111

interference of WM on RL during learning.1112

In these sections, we compared model goodness-of-fit using AICc and BIC.1113

6.7.1 RL, WM, RLWM model fits1114

Three models that are often shown in “RLWM” papers are RL alone, WM alone, and RL+WM1115

models. We decided not to show their fits in the main manuscript, because they explicitly do1116

not include any condition-specific differences, and would thus obviously not fit the data well.1117

However, for the sake of completeness and comparison, we include the model validation and model1118

comparison plots of Experiment 1 participants, relative to the condition-specific RL learning rate1119

model used in the main manuscript. Indeed, they are not able to capture the data (Figure ??).1120
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Figure 22: Model validation plots for the condition-specific RL learning rate, RL, WM, and RLWM

models (left four plots) for Experiment 1 data. AICc (top) and BIC (bottom) differences between

models and RL learning rate model. A smaller number indicates a better fit. The condition-specific

RL learning rate clearly fit the data qualitatively and quantitatively better than these models.

6.7.2 Perseveration and negative learning rate1121

In our main six models, we fit a perseveration rate ϕ, and we fix negative learning rate α− to 0.1122

Here, we factorially compare model family (6: RL learning rate, RL credit assignment, RL decision1123

confusion, WM decay, WM decision confusion, and RL-WM weight), perseveration (2: fixed to 0,1124

fit as free parameter), and negative learning rate (2: fixed to 0, fit as free parameter).1125

Figure 23 illustrates the quantitiative comparison of all models for both AICc and BIC. We1126

find that fitting a perseveration parameter does seem to increase the model’s quantitative fit,1127

while fitting a negative learning rate parameter does not seem to make a difference. (This is1128

because the values are fit to 0). More importantly, we see that the ranking across model family1129

doesn’t vary no matter what perseveration / negative learning rate combination we use. In other1130

words, our conclusion that RL learning rate and RL decision confusion models fit data best are1131

not dependent on our specific assumptions about perseveration or negative learning rate. For1132

simplicity, we decided in the main manuscript to include the model which keeps perseveration as1133

a free parameter, and fixed negative learning rate α− = 0.1134
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Figure 23: Quantitative results of factorial model comparison. AICc (left) and BIC (right) differ-

ences, relative to the RL learning rate model in the main manuscript. A lower number indicates

a better fit. For each plot, each section of six models correspond to the respective characteristics:

ϕ = 0, fitted α−; ϕ = 0, α− = 0; fitted ϕ and α−; fitted ϕ, α− = 0

6.7.3 Perseveration with free decay rate parameter1135

We define perseveration in Section 2.3.1 of the main manuscript, in which we fix the perseveration1136

choice trace decay rate, τ , to 1. Thus, only the previous trial affects the current perseveration1137

behavior. We investigate in this section whether that was a reasonable assumption, by fitting1138

the decay rate τ as a free parameter. Freeing this parameter neither significantly increases model1139

performance of any of our main six models nor changes model ranking.1140
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Figure 24: Factorial model comparison with perseveration parameter τ fixed to 1 (left six models

on each plot) and as a free parameter (right six models on each plot). AICc (left plot) and BIC

(right plot) are relative to the RL learning rate model with τ = 1. A lower value indicates a better

fit to data. Model differences do not change model rankings, and model fits are not noticeably

improved by including a free τ parameter.

6.7.4 RL learning rate + WM decay model, Superfree model1141

In this section, we show the model validation and model comparison plots for the two additional1142

models considered in the main manuscript (Section 4.2).1143
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Figure 25: Model validations of RL learning rate + WM decay model and Superfree model for

Experiment 1 (top row) and Experiment 2 (bottom row). We plot them next to the model validation

of the RL learning rate model, which is our best fitting model. We show quantitiavie model

comparison for each participant (yellow dots), with bootstrapped median 90 CI of the median

(grey box). All other quantiative model comparison metrics are displayed in tables 2 and 3 in the

main text.

6.7.5 Condition-specific interaction for train+test models1144

In this section, we describe models that were fitted with different degrees of RL/WM interference1145

between train and test in different conditions.1146

The δ used in updating Q values in interference model includes the WM values, rather than1147

just Q values (Eq: 2). For condition-specific interference, we additionally add a multipllicative1148

term to scale the amount of interference the WM value association gives when calculating delta.1149

We denote the condition-specific interference scalar as xc for condition c.1150

δ = r − (ωnxc ∗WM(s, a) + (1− ωnxc) ∗Q(s, a)).
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Figure 26: Model validation and comparison for condition-specific interference mod-

els. A. Model validation for RL learning rate (left plots) and RL decision confustion (right plots)

model with condition-specific interference. Top row corresponds to learning phase, bottom row

corresponds to test phase behavior (error bars) and model predictions (color fill). B. AICc differ-

ences of all models fit on learning and test phase data, relative to RL learning rate model with

no interference. Negative values indicate better fit. Including condition-specific interference (last

two) marginally improves fit, but still does not capture data perfectly.
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