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Abstract 

How do human brains represent tasks of varying structure? The lateral prefrontal cortex (lPFC) 

flexibly represents task information. However, principles that shape lPFC representational 

geometry remain unsettled. We use fMRI and pattern analyses to reveal the structure of lPFC 

representational geometries as humans perform two distinct categorization tasks– one with flat, 

conjunctive categories and another with hierarchical, context-dependent categories. We show 

that lPFC encodes task-relevant information with task-tailored geometries of intermediate 

dimensionality. These geometries preferentially enhance the separability of task-relevant 

variables while encoding a subset in abstract form. Specifically, in the flat task, a global axis 

encodes response-relevant categories abstractly, while category-specific local geometries are 

high-dimensional. In the hierarchy task, a global axis abstractly encodes the higher-level context, 

while low-dimensional, context-specific local geometries compress irrelevant information and 

abstractly encode the relevant information. Comparing these task geometries exposes 

generalizable principles by which lPFC tailors representations to different tasks.   
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Introduction 

Humans perform a diverse range of tasks in complex, variable settings. Performing each 

task requires attending to a varying set of relevant stimuli, actions, rules, goals, schedules and 

outcomes, organized by a cognitive strategy tailored to the rules and requirements of the task. How 

does the brain represent this task information in a way that supports the broad range of tasks people 

can perform? 

The range of our expressive behavior relies on cognitive control processes1 that leverage 

circuits in the prefrontal cortex (PFC) to orchestrate sensory, motor, cognitive and affective 

processing across different brain regions in service of currently relevant task goals2-5. Mechanistic 

models of cognitive control posit that PFC neural activity enables this orchestration by encoding 

a control representation that uses task-specific inputs (stimuli, goals, rules, etc.) 6-9 to influence 

information processing throughout the brain. The vast range of potential human tasks means the 

lPFC must be capable of encoding control representations that implement tasks with widely 

varying structures.  

Studies in non-human primates have provided evidence concerning the content of PFC 

control representations. Specifically, neurons located around the principal sulcus in the lateral PFC 

(lPFC) encode a wide array of information about whatever task is being performed, including task 

rules, stimulus features, responses, rewards, and other latent variables10-16. These findings have 

been corroborated in the human brain using fMRI, where various types of task-relevant 

information can be decoded from hemodynamic activity in lPFC17-23. Therefore, a broad consensus 

has emerged that lPFC control representations encode most, if not all, task-relevant features.  

However, the coding principles that shape the geometry of these representations, and how 
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they accommodate different task structures, remain unsettled24-30. The geometry of a neural 

representation shapes the accessibility of the information it encodes28. A useful computational lens 

on lPFC coding comes from considering the dimensionality of the representation, which controls 

a tradeoff between the separability afforded by a neural code and the capacity for abstract, 

generalizable coding28,29  

At one extreme, maximally compressed low-dimensional geometries constructed from 

pure selective or linear mixed selective neurons encode each independent input feature along 

orthogonal dimensions. These dimensions are abstract in that they will encode the same feature 

regardless of the other inputs being encoded and can thus support generalization across 

independent input features.  However, they do so at the cost of poor separability. In particular, 

such geometries will fail to support readout potential task dimension that depends on nonlinearly 

mixing the input features and therefore cannot support efficient performance for most tasks.  

At the other extreme, maximally expanded high-dimensional geometries, constructed by 

nonlinearly mixing of all input features, achieve high separability for all potential combinations of 

task inputs. Therefore, these geometries are highly expressive and able to support the readout of 

any potential task dimension, but at the cost of generalizability. In particular, such geometries 

would be highly sensitive to small changes in the inputs, whether driven by noise or other task-

irrelevant features.   

Representational geometries between these two extremes provide a suite of possible 

compromises between the overall separability and generalizability of the representation. In 

particular, this intermediate regime includes geometries that would privilege both the separability 

and generalizability of some essential dimensions at the cost of other dimensions, thus affording 

representations that are adapted to the needs of the task24.  
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Figure 1. (A) Experimental tasks. Participants learnt two tasks with distinct structures – a 
hierarchy task (left) and a flat task (right). In the hierarchy task, one input feature specifies which 
of the other input features determines the response category hierarchically. In the flat task, the 
conjunction of all three input features determines the response category. (B) An example trial. 
The stimulus consists of a child’s face, an outdoor scene and the spoken number nine. The 
response panel consists of a square and a circle. If the subject selected the circle category, they 
would press the right key to indicate their response as the circle is on the right of fixation. (C) 
Stimulus categories employed. Different stimulus sets were employed for the two tasks for each 
participant and the stimulus–task mapping was counterbalanced across participants. (D) Task 
agnostic and task-tailored representation hypotheses make distinct predictions for how the lPFC 
may accommodate tasks with different structures. Each plot represents a hypothetical neural 
space defined by the firing rates of 3 different neurons. The activity of the population in response 
to each trial types are shown as individual dots. Illustration of geometries for the flat task (top 
panel) and hierarchy task (bottom panel) under the two hypotheses. A task-agnostic 
representational geometry employs a high-dimensional format which enhances separability across 
many different dimensions, allowing for multiple different readouts. Therefore, the same 
geometry can serve both tasks (left). Task-tailored representations leverage specifically enhance 
the separability of dimensions relevant to the task, while reducing it for irrelevant dimensions to 
enhance generalizability, such that the manifold is optimized for the task structure. Therefore, 
distinct geometries are learnt for each task. 
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Considering this tradeoff between separability and generalizability, two contrasting 

accounts of coding principles of lPFC representations suggest different solutions to the problem 

of accommodating different task structures. 

One account proposes that lPFC encodes the mix of inputs reflecting different task states 

on manifolds that are shaped, by learning, to optimize the readout of task-relevant outputs. 25,30,31 

(Fig.1). Such task-tailored representational geometries are shaped by task demands, and can 

therefore span the entire range from low to high-dimensionality. Crucially, task-tailored 

representations selectively enhance the separability of task-relevant output dimensions, making 

them easier to read out. At the same time, they reduce separability along task-irrelevant 

dimensions to make the readout of task-relevant outputs robust and generalizable, in that they are 

less sensitive to noise and irrelevant features of the input25,28,32,33. Therefore, task-tailored 

representations combine the benefits of low and high dimensional geometries. However, these 

representations are specialized to the task and would not be suited to other tasks with differently 

structured input-output contingencies. Therefore, to adapt to different tasks, the population must 

learn to encode and read out from a variety of task-tailored representations, organizing them in 

orthogonal subspaces to prevent interference25,31.  

An alternative account proposes that lPFC randomly mixes and projects its inputs onto 

high-dimensional manifolds that efficiently maximize the separability of all possible task 

structures arising from those inputs27,28. The higher separability enables a variety of arbitrary 

input-output contingencies to be read out from a single, expressive task-agnostic representation. 

This provides a basis for implementing multiple different input-output contingencies 

simultaneously27, with learning only needing to shape the readout, rather than shaping the 

representation. However, while such representations are expressive, they are also highly sensitive 
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to all the features of the input, including irrelevant ones. This makes them less robust to noise, 

and less capable of generalizing to novel inputs.  

Past studies have found evidence for both low-dimensional and high-dimensional lPFC 

representations across different tasks, training regimes and species24,25,27,28. It has also been 

proposed that the lPFC can switch between low and high-dimensional representational 

representations depending on task demands30 or as the result of learning32. However, the mere 

observation of high dimensional geometry in lPFC does not provide evidence that its enhanced 

expressivity is used by the brain to accommodate multiple task structures, as opposed to other 

adaptive benefits of this geometry29. And likewise, the presence of low-dimensional geometry 

tailored to an individual task does not mean that new tasks are accommodated with separate low-

dimensional manifolds. Indeed, no previous work has examined how lPFC representational 

geometry accommodates multiple tasks with different structures. Consequently, it remains 

unknown whether lPFC accommodates multiple tasks with an expressive, but task-agnostic 

representational geometry or task-tailored geometries specialized for individual task demands.  

Crucially, the task-tailored and task-agnostic representation accounts make different 

predictions about the geometry of representations across different tasks. Specifically, task-

tailored representations should be specialized, and thus their geometries should differ between 

tasks of different structures. For each task, enhanced separability is predicted specifically for 

dimensions encoding task variables relevant to that task. On the other hand, task-agnostic 

geometries that can be shared across many task structures must employ higher-dimensional 

formats that enhance the separability of multiple dimensions simultaneously, at the cost of 

generalizability28. The same task-agnostic representation would be used for different tasks. 
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 Here we test the predictions of these two accounts by examining how lPFC neural 

representations adapt to the demands of two tasks with structurally different input-output 

contingencies. We extensively trained human participants to perform two distinct categorization 

tasks (Fig. 1). One was a flat task where the categorization was defined based on a non-linear 

mapping. The other was a hierarchical task where participants switched between two stimulus-

defined contexts, with the categorization defined by independent stimulus features across 

contexts. Using decoding and representational similarity analysis of fMRI data, we characterized 

the lPFC representational geometries of these tasks at a level of detail unprecedented in humans. 

We found evidence that lPFC encodes task-tailored, rather than task-agnostic geometries, which 

were shaped by task structure based on principles that balance separability and generalizability.  

Results 

Experimental tasks and training 

To investigate representational geometries in lPFC, we trained human participants (N = 94; 

58 female, 33 male, 3 declined to answer; mean age = 22.9 ± 4.7) on two categorization tasks with 

different structures. In each task, a set of eight types of stimuli defined by two visual features (e.g., 

adult or child face, indoor or outdoor scene) and an auditory feature (e.g., low or high spoken 

number words), were mapped to two response categories symbolized by visual shapes e.g., circle 

or square). On presentation of the stimulus, participants had to decide to which category the 

stimulus belonged and indicate their choice by pressing a key based on the location of the 

associated category symbol. Participants were first trained on a ‘flat’ task in which categorization 

required a consideration of the conjunction of all three stimulus features (specified by a latent XOR 

rule, see Methods), all of which were necessary for identifying the category (Fig 1). They were 
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then trained on a ‘hierarchy’ task with a separate set of stimuli in which the mapping was defined 

by a hierarchical rule, such that the auditory feature dictated which of the two visual features was 

relevant for identifying the category (Fig 1).  

Note that the two tasks were assigned different stimuli in each participant and the 

assignment of stimulus set to task was counterbalanced across participants. For convenience, we 

will henceforth refer to three stimulus features as visual feature 1(young/old face or mammal/bird), 

visual feature 2 (indoor/outdoor scene or edible/inedible object) and auditory feature (low/high 

number or noun/verb). We will refer to the category (square/circle or triangle/pentagon) based on 

which participants selected their response as the response category, and to the actual button press 

(index or middle finger) as the motor response.  

Additionally, our stimulus sets were designed to concurrently and systematically vary 

along three orthogonal, completely task-irrelevant dimensions. For example, while the task-

relevant dimension for objects was edible vs inedible, the objects also varied along an orthogonal 

natural vs man-made dimension. Similarly, while low/high magnitude was a task-relevant 

dimension, the auditory stimuli were also odd or even (see Methods for all orthogonal dimensions). 

These orthogonal, task-irrelevant features (two visual, 1 auditory per stimulus set) were never 

relevant for performing the task and were never described to participants. These orthogonal 

dimensions were included in order to test the effect of task-relevance on representational 

geometries. 

Participants were trained on the tasks until they reached a minimum overall accuracy of 

85%, as well as an accuracy of 80% on each of the eight individual trial types. During this training 

phase, participants were both explicitly instructed on the stimulus-category mappings, as well as 

given trial-by-trial feedback. Participants took more trials on average to achieve the predefined 
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criterion on the flat compared to the hierarchy task (flat task: mean 1416, range 440-2640 trials-

to-criterion; hierarchy task: mean 409 trials, range 176-1056 trials-to-criterion).  

A subset of the participants that met pre-defined performance criteria on both tasks then 

performed approximately 2000 trials for each task over 10 days (5 days for each task), while being 

scanned with fMRI (N = 20, 14 female, 6 male, mean age = 22.8 ± 4.6; see Methods for full 

exclusion criteria). During the training phase, the scanned participants exhibited terminal error 

rates that were significantly higher for the flat task than the hierarchy task (flat task error rate: 

9.5%, hierarchy task error rate: 6.4%, paired t-test: t = 3.87, p = 0.001), as well as terminal response 

times (flat task mean RT 1398 ms, hierarchy task mean RT 1277 ms; paired t-test: t = 4.25, p < 

0.001) (Fig. 2), which was expected as the hierarchical rule simplifies the response selection 

problem.   

 

Behavioral performance on the flat and hierarchy task 

Following training, participants continued to perform at a high accuracy on both tasks in 

the subsequent scanning sessions, despite no longer receiving trial-by-trial feedback (Fig. 2; flat 

task error rate: 14%; hierarchy task error rate: 8%). Performance was slower overall in the 
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scanner (mean flat RT 1468 ms, mean hierarchy task RT 1335 ms), as is commonly 

observed34,35. A repeated measures ANOVA of accuracy confirmed a main effect of task (F1,57 = 

22.5, p < 0.001 and phase (F1,57 = 11.2, p = 0.001) but no task x phase interaction (F1,57 = 1.6). A 

similar pattern was observed for RT with significant main effects of task (F1,57 = 52.3, p < 0.001 

and phase (F1,57 = 14.9, p < 0.001) but no task x phase interaction (F1,57 = 0.6).  

Figure 2. Behavioral performance of scanning group. Error rates (A) and response times (B) 
during training (lines) and scanning (dots) phase. Participants were slower to learn and had a 
higher asymptotic error rate on the flat task at the end of the training phase. Error rates 
increased slightly in the scanner phase. Lines represent block-wise performance in the training 
phase. Dots represent mean overall performance in the scanning phase. Participants did not 
show an improvement in response time on the flat task. Participants were significantly slower 
to respond in the scanner (points on the right) compared to the end of training. (C) Behavioral 
evidence that participants used distinct strategies in flat vs hierarchy tasks. During training 
(left plots), in the flat task, RT costs were similar for switching of the different features. In the 
hierarchy task, there was a significantly larger cost when the auditory dimension (AF), which 
signaled superordinate context, switched. This pattern of hierarchical switching across tasks 
was maintained during the scanning phase (right plots).  (D) In the scanning phase, response 
category and motor response interacted in driving RT. VF1 = Visual Feature 1, VF2 = Visual 
Feature 2, AF = Auditory Feature, RC = Response Category, MR = Motor Response. All error 
bars reflect 95% confidence intervals.  
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We tested whether participants employed distinct strategies across the two tasks by 

analyzing the pattern of RT costs associated with switches of different task features (Fig. 2C). In 

a task-specific ANOVA on the flat task, while switch costs were evident when a feature switched 

(main effect of switching: F1,114 = 117.2, p < 0.001), those costs did not significantly vary across 

the features (switch x feature interaction: F2,114 =2.17). In contrast in the hierarchy task, we 

observed a significantly larger cost of switching the auditory feature which signaled a switch in 

the higher-level context than either of the visual features (switch:feature interaction: F2,114 = 25.9, 

p < 0.001), confirming that participants employed the instructed hierarchical strategy for solving 

the task despite extensive practice. These differences in switching effects across tasks were 

supported by a significant three-way task (flat vs hierarchy) x trial-type (switch vs repeat) x feature 

(stimulus dimensions 1-3 or response categories) interaction (F5,228 = 7.5, p < 0.001) along with 

significant main effects of task (F1,228 = 38.3, p < 0.001), switching (F1,228 = 117.2, p < 0.001) and 

the switch-by-feature interaction (F2,228 = 33.5, p < 0.001). 

 We did not observe a significant effect of switching the response category in either task (p 

> 0.1). Further analysis revealed a significant interaction between response category switching and 

motor response switching (Fig. 2D) in both the flat (F1,57 = 23.6, p < 0.001) and hierarchy (F1,57 = 

49.8, p < 0.001) tasks. In both tasks, the lack of an observed effect of switching the response 

category was driven by a pattern of partial overlap costs36, such that switching any one of the 

features produces a large cost, but switching both features or no features produced lower costs.    

 

Left lPFC encodes diverse task-relevant information 

We preselected a cluster of 10 parcels in the mid and dorsal portion of left and right lPFC 

from a previously published cortical parcellation37.  These parcels cluster as part of a 
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frontoparietal network defined by resting state connectivity38 and overlap with loci previously 

associated with cognitive control4. Moreover, their resting state functional connectivity pattern 

resembles that of lPFC regions studied in macaques39 showing robust evidence for the diverse, 

high dimensional coding of task information27, which provides the premise for our hypotheses.   

Given the difficulty of decoding from lPFC with human fMRI40, we maximized power in 

our analyses by aggregating across the lPFC parcels in each hemisphere. These parcels all belong 

to the same resting state network and thus have correlated fluctuations in activity and we do not 

expect qualitative differences across them.  In addition to the PFC ROIs, we also selected a 

parcel associated with the left and right primary auditory cortex (pAC). This region is involved 

in early sensory processing, and so served as a control for lPFC.  

Whole-brain, voxel-wise general linear models (GLMs) were employed to estimate the 

hemodynamic response associated with the 8 trial types in each scanner run, separately for both 

tasks. GLMs were conservatively designed to control for confounding factors like motor 

responses and the number of trials that went into estimating the run-wise responses to each trial 

type (see Methods). From the resulting beta images, parcel-specific multi-voxel patterns were 

extracted and analyzed using both decoding and representational similarity analysis approaches.  

We first examined the content of neural representations in lPFC and primary auditory 

cortex (pAC) for comparison. Under the task-agnostic geometry hypothesis, all task-relevant 

information, and potentially task-irrelevant information, is predicted to be decodable in lPFC and 

the information content of the representations should not vary across the two task structures. 

Under the task-tailored hypothesis, differing task demands imposed by the task structures would 

shape the content of the representations resulting in qualitative or quantitative differences in the 

information decodable across the two task structures.  
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We employed cross-validated multivoxel decoding to test whether local patterns in the 

lPFC parcels encode task-relevant information. Using a leave-one-run-out cross-validation 

scheme, linear support vector machines (SVMs) were trained to decode task-relevant 

dichotomies from parcel-specific multi-voxel patterns associated with the 8 trial types. For each 

task, we trained decoders for each of the three stimulus features, the response category and the 

motor response. In each cross-validation fold, the decoders were tested on the patterns from the 

left-out run and decoding accuracies were averaged across cross-validation folds. Classifiers 

were trained and tested separately for each lPFC parcel (i.e. on local patterns) before the 

decoding accuracies were averaged across parcels in each hemisphere to maximize power. 

Classifier performance was evaluated against chance (50%) and compared across conditions with 

parametric statistics.  

In line with previous results, we found evidence for the coding of diverse task-relevant 

information in lPFC (Fig 3A,C). As expected for fMRI decoding in lPFC40, mean decoding 

accuracies in left lPFC parcels were low but significantly above chance levels (correcting for 

multiple comparisons for the number of ROIs tested after aggregation – i.e. for 4 ROIs) for most 

task features across both the flat task (visual feature 1: 51.8%, t = 4.9, p < 0.001*; visual feature 

2: 51.7%, t = 4.7, p = 0.002*; auditory feature: 51.7%, t = 3.0, p = 0.0073*; response category: 

51.52%, t = 3.3, p = 0.0036*; motor response: 51.0%, t = 2.5, p = 0.021) and the hierarchy task 

(visual feature 1: 50.6%, t = 2.6, p = 0.0177; visual feature 2: 50.9%, %, t = 2.9, p = 0.0082*; 

auditory feature/context: 54.6%, %, t = 8.0, p < 0.001*; response category: 52.2%%, t = 4.5, p < 

0.001*; motor response: 50.16%, t = 0.44, p > 0.1). In the right lPFC parcels, only visual feature 

2 and the response category were decoded above chance levels in the flat task (scene: 50.6%, t = 

2.7, p = 0.015; response category: 51.5%, t = 5.2, p < 0.001*) while the auditory feature 
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(reflecting context) and the response category were decoded above chance levels in the hierarchy 

task (visual feature 2: 54.0%, t = 8.7, p < 0.001*; response category: 51.3%, t = 3.5, p = 0.0025*). 

Task-specific mixed model ANOVAs comparing decoding accuracies in left lPFC across sub-

groups of participants that were assigned different stimulus sets for each task showed that the 

diverse coding of task-relevant features was insensitive to this assignment in both the flat (F1,18 = 

0.1) and hierarchy task (F1,18 = 1.7).   

A repeated measures ANOVA of the left lPFC decoding accuracies with task and feature 

as factors revealed a significant task x feature interaction (F3,57 = 7.4, p < 0.001). Posthoc 

comparisons found significantly higher decoding accuracies specifically for the auditory feature 

in the hierarchy task compared to the flat task (Bonferroni corrected p < 0.001). Therefore, while 

task structure did not appreciably influence what information was coded in the lPFC, it did 

influence the strength of coding of the auditory feature which plays the role of superordinate 

context in the hierarchy task, but not the flat task, an observation consistent with the task-tailored 

representation hypothesis.  

 In contrast to the lPFC, we did not observe diverse coding in the primary auditory cortex 

(pAC, Fig. 3B,D). Only the auditory stimulus feature was strongly coded in the pAC across both 

the left (flat task 56.5%, t = 8.6, p < 0.001*; hierarchy task: 58.5%, t = 8.7, p < 0.001*) and right 

hemispheres (flat task: 54.8%, t = 6.3, p < 0.001, hierarchy task: 57.6%, t = 8.2, p < 0.001*). 

Similar to the lPFC, however, the auditory feature in pAC was also shaped by task structure, 

with the accuracies being higher specifically in the hierarchy task (where the auditory feature 

signals context) compared to the flat task (F1,19 =11.6, p = 0.003).  

 
* p values marked with an asterisk survived Bonferroni correction for multiple comparisons across 4 ROIs.  
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In summary, these results replicate previous reports of the coding of diverse, task-

relevant information in lPFC (particularly in the left lPFC). These results were specific to the left 

lPFC and markedly differed from the primary auditory cortex, which preferentially coded 

auditory stimulus information. Moreover, while task structure did not influence what information 

was decodable it strongly influenced the strength of decoding of the auditory feature in the 

hierarchy task. While this difference is consistent with the task-tailored representation 

hypothesis, it is also consistent with greater attention or processing time spent on this feature, 

which likely resulted in the same pattern in pAC. Subsequent analyses were designed to provide 

more specificity. 

 

Left lPFC preferentially encodes task-relevant information across the flat and hierarchy task  

We next asked whether lPFC preferentially codes task-relevant information. An extreme 

version of the task-agnostic representation hypothesis is that lPFC obligatorily receives and non-

linearly mixes a wide variety of task-relevant and task-irrelevant information41. Such a 

representation would reflect a coding strategy that does not commit to any particular task or task  

structure, thus affording maximum flexibility in adapting to any task at hand. Alternatively, the 

task-tailored representation hypothesis predicts a strong preference for coding task-relevant 

information.  

To test whether lPFC preferentially codes task-relevant information, we leveraged the 

fact that all stimuli used in the experiment were also systematically varied along orthogonal 

dimensions that were not used in the task or discussed with participants. For example, the task-

relevant feature for objects was edible vs inedible, while the orthogonal irrelevant feature was 
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animate vs inanimate. It is important to emphasize that, by design, these orthogonal dimensions 

were never task-relevant. Results are plotted in Fig. 3E and 3F. 
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Figure 3. Information content of lPFC and pAC representations. Cross-validated decoding 
accuracies for all task features in left lPFC (A), right lPFC (B), left pAC (C) and right pAC 
(D).  While left lPFC shows diverse coding of various task features, left and right pAC only 
show coding of auditory stimulus information. Across both, the flat task (D) and hierarchy 
task (E), left lPFC shows selective coding of task-relevant stimulus information. On the other 
hand, left pAC shows obligatory coding of auditory stimulus information regardless of its 
relevant for the task. VF1 = Visual feature 1, VF2 = Visual Feature 2, AF = Auditory 
Feature, RC = Response Category, MR = Motor Response. All error bars reflect 95% 
confidence intervals.  
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In the left lPFC, we found little evidence for the coding of orthogonal task-irrelevant 

stimulus features with no mean decoding accuracy being reliably above chance levels, except 

one, the natural vs man-made object feature (natural vs man-made: 51.0%, t = 4.79, p = 0.001*). 

Task-specific, stimulus feature x task relevance rmANOVAs confirmed a main effect of task 

relevance in both the flat task (F1,19 =15.2, p < 0.001) and the hierarchy task (F1,19 =76.1, p < 

0.001) with no interaction. In the hierarchy task, the effect of task relevance interacted with 

stimulus feature (F1,19 = 9.7, p < 0.001), with Bonferroni corrected posthoc tests showing 

significantly higher coding of the task-relevant visual feature 1 (p = 0.019) and the auditory 

feature (p < 0.001), but not visual feature 2 (p = 0.09), which was driven by lPFC coding of the 

irrelevant natural vs manmade category.  

In stark contrast with the lPFC, pAC coded both task-relevant and orthogonal, irrelevant 

auditory stimulus features. We found strong coding of the orthogonal, task-irrelevant auditory 

features in both left (flat task: 57.0%, t = 7.81, p < 0.001*; hierarchy task: 55.8%, t = 7.3, p < 

0.001*) and right (flat task: 53.9%, t = 4.6, p < 0.001*; hierarchy task: 54.3%, t = 5.1, p < 

0.001*) primary auditory cortex. Therefore, unlike the lPFC, pAC coded both task-relevant and 

task-irrelevant auditory stimulus features. Similar to the lPFC, however, the strength of coding of 

auditory features in pAC was shaped by task structure. Specifically in the hierarchy task, 

decoding accuracies for the task-relevant auditory feature were reliably higher than those for the 

orthogonal, irrelevant auditory feature (F1,19 =13.3, p = 0.002). In the flat task, we found no such 

evidence for an effect of task-relevance (F1,19 =0.03, p > 0.1).  

Collectively, these results support the conclusion that left lPFC preferentially encodes task-

relevant information. On the other hand, the pAC only encoded auditory information, regardless 

of whether it is task-relevant.  
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Left lPFC representations show enhanced separability and non-linear mixing of task-

relevant variables across task structures 

The task-tailored and task-agnostic hypotheses make distinct predictions about the 

separability of lPFC representations.  While the task-agnostic hypothesis predicts high separability 

along all dimensions, the task-tailored hypothesis predicts enhanced separability of the key 

dimensions coding task-relevant variables. Importantly, the task-tailored hypothesis predicts that 

different task variables will show high separability across the two tasks, owing to their distinct 

structure. To test these hypotheses, we focus specifically on the left lPFC where we observed 

diverse coding of task-relevant information, and for comparison, on bilateral pAC, where we 

observed preferential coding of auditory information. Given that left and right pAC showed similar 

representational content, we averaged across them in subsequent analyses.   

To assess the separability of lPFC representations, we examined decodability of all possible 

binary dichotomies with a linear classifier. These binary dichotomies reflect the many possible 

‘dimensions’ that could be read out from the mixture of the task inputs. The greater the number of 

such dichotomies that can be read out, the more separable the representation27,28. To minimize 

classifier bias resulting from unbalanced training data, we restricted ourselves to all 35 balanced 

binary dichotomies which had an equal number of patterns for each class (4 trial types each) 24,32.  

After Bonferroni correction for multiple comparisons for the number of dichotomies, 9/35 

dichotomies in the flat task and 17/35 dichotomies in the hierarchy task were decodable above 

chance levels in the left lPFC at the group level. A maximally compressed, low-dimensional 

representation consisting of only pure selective neurons would support the coding of fewer than 5 

dichotomies28 while a maximally expanded, high-dimensional representation would support all 35.  

In contrast, a parallel analysis of the representation of the three orthogonal, task-irrelevant features 
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found that, after Bonferroni correction for multiple comparisons, none of the 35 dichotomies could 

be decoded above chance levels for either of the tasks. Even at a more liberal threshold (i.e., 

without multiple comparison correction), only 2/35 (flat task) and 1/35 (hierarchy task) 

dichotomies could be decoded. Therefore, the observed proportions find evidence that only the 

task-relevant inputs across both task structures were encoded with geometries of intermediate 

dimensionality.   

The apparently higher proportion of decodable dichotomies for the hierarchy task vs the 

flat task would suggest that lPFC encodes the former on a higher-dimensional manifold that would 

support a higher degree of separability. However, it is not appropriate to compare these proportions 

to each other, as we do not have variability associated with each. Thus, to test this impression more 

formally, we compared the separability across the two tasks using shattering dimensionality, 

defined as the average decoding accuracy across all 35 dichotomies. Shattering dimensionality 

reflects the overall separability of the representation and is informed by separability along a wide 

range of neural dimensions. Shattering dimensionality was reliably above chance (Fig 4B) for both 

the flat task (51.0%, t = 9.9, p < 0.001) and the hierarchy task (51.1%, t = 10.3, p < 0.001) and 

paired t-tests showed that it was significantly higher for the representation of task-relevant features 

than the orthogonal, task-irrelevant features (flat task: t = 5.8, p < 0.001; hierarchy task: t = 10.4, 

p < 0.001). However, shattering dimensionality did not reliably differ across the two tasks (paired 

t-test: t = 0.77), with the Bayes factor offering moderate evidence in favor of the null hypothesis 

(BF10 = 0.30).  

While shattering dimensionality provides a measure of overall separability reflecting all 

neural dimensions, it can be biased by the strength of pure-selective coding of task variables. To 

examine separability while minimizing the influence of pure selective coding, we identified 
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dichotomies in each task that were orthogonal to all four task-relevant variables (3 stimulus 

features and response category). The separability of these dichotomies cannot be influenced by 

pure selective coding of any of the task variables. This mixed-selective separability (Fig 4C) was 

reliably above chance in the left lPFC (flat task: 50.6%, t = 10.0, p < 0.001; hierarchy task: 50.4%, 

t = 2.3, p = 0.036) providing direct evidence for enhanced separability driven by non-linear mixed 

selectivity in lPFC. However, this measure also did not differ between the tasks (paired t-test: t = 

0.9, BF10 = 0.3). Therefore, the separability of the lPFC task representations does not appear to be 

shaped by task structure. 

Of the 35 dichotomies, 4 are identifiable task variables (three stimulus features, response 

category), while the rest reflected arbitrary mixtures of these variables. The task-tailored 

representation hypothesis predicts that separability should be enhanced specifically for dimensions 

encoding task variables while the task-agnostic representation hypothesis predicts equivalent 

separability across many dimensions, including those that may not be required to implement the 

task. In the left lPFC, mean separability was reliably above chance levels for dichotomies encoding 

task-variables (flat task: 51.3%, t = 6.8, p < 0.001; hierarchy task: 51.8%, t = 8.9, p < 0.001), as 

well as the remaining dichotomies (flat task: 50.9%, t = 10.0, p < 0.001; hierarchy task: 51.0%, t 

= 9.8, p < 0.001). Moreover, separability in left lPFC parcels was significantly higher for the 

dichotomies encoding the task variables compared to the 31 other arbitrary variables in both the 

flat task (paired t-test, t = 2.4, p = 0.028 and the hierarchy task (paired t-test, t = 4.9, p < 0.001). 

Therefore, in left lPFC, separability is preferentially enhanced for neural dimensions encoding task 

variables.   
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Figure 4. (A) Separability (left panel) was assessed by decoding all possible balanced dichotomies. 
The same set of 8 patterns can be split into different dichotomies or classes. For example, three 
dichotomies are illustrated as either red vs yellow points, outlined vs not outlined points, and points 
marked with x vs unmarked. A total of 35 balanced dichotomies are possible. Shattering 
dimensionality is the mean cross-validated decoding accuracy averaged across all dichotomies. 
Generalizability or abstraction was assessed through cross-generalization (middle panel). Classifiers 
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were trained on half the points assigned to each label (blue in middle panel), and tested on the other 
half (green in middle panel), with all possible combinations of training and test sets evaluated. The 
averaged cross-classification generalization performance (CCGP). Finally, cross-cluster 
representational alignment is assessed by measuring the angle (q) between the coding axis associated 
with the same feature in the two clusters. The coding axis is mathematically the weight vector of the 
trained classifier. (B) Shattering dimensionality, defined here as the mean cross-validated decoding 
accuracy across all 35 balanced binary dichotomies, is a measure of the separability of the 
representation. The separability of representations in lPFC and pAC was significantly above chance 
levels, and was not different across tasks or regions (B, left panel). Separability for the representation 
of the task-relevant inputs was significantly higher than for the orthogonal, task-irrelevant inputs in 
both flat (B, middle panel) and hierarchy (B, right panel) tasks. (C) Mixed-selective separability, 
defined as the mean cross-validated decoding accuracy across binary dichotomies that are orthogonal 
to known task variables (stimulus features and response category), was significantly above chance 
levels only in the lPFC and was higher than in pAC, providing evidence for non-linear mixing of task 
variables in the lPFC. (D) Different task variables were encoded in an abstract, generalizable form in 
the lPFC (D, left panel) across the two tasks. In the flat task, the response category (RC) was encoded 
in abstract form, while in the hierarchy task it was the auditory feature (AF). In the pAC (D, right 
panel) only the auditory feature was abstractly coded. VF1 = Visual feature 1, VF2 = Visual Feature 2, 
AF = Auditory Feature, RC = Response Category. All error bars reflect 95% confidence intervals.  
 

In the pAC (averaged across the two hemispheres), like the lPFC, shattering dimensionality 

was again reliably above chance for both the flat task (51.1%, t = 6.9, p < 0.001) and the hierarchy 

task (51.3%, t = 7.8, p < 0.001), and it did not differ between the two tasks (t = 1.2, BF10 = 0.42). 

Moreover, separability was higher for neural dimensions encoding task variables (flat task: t = 3.4, 

p = 0.003; hierarchy task: t = 6.43, p < 0.001). However, unlike left lPFC, paired t-tests showed 

no reliable difference in the separability of the task-relevant features vs the orthogonal, task-

irrelevant features (flat task: t = 0.9, BF10 = 0.34; hierarchy task: t = 1.17, BF10 = 0.42). Moreover, 

mixed-selective separability was not reliably above chance in the pAC (ps > 0.1). Therefore, the 

overall separability of pAC representations does not appear to reflect non-linear mixing and is not 

shaped by either task-relevance or task structure.  

We next tested the differences in representational geometry between lPFC and the pAC. 

Shattering dimensionality was not reliably different between the left lPFC and pAC (flat task: t = 
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0.69, BF10 = 0.29; hierarchy task: t = 1.3, BF10 = 0.46). However, this comparison is potentially 

biased by differences across regions in the signal-to-noise and the strength of pure selective coding. 

It’s possible, for instance, that the shattering dimension reflects strong pure selective coding of 

auditory information in the pAC, while in the lPFC the measure reflects non-linear mixed selective 

coding of a variety of task variables. Therefore, we examined mixed-selective separability which 

is not influenced by pure selective coding of any of the task variables. A region x task rmANOVA 

confirmed a significant main effect of region (F1,19 =16.0, p < 0.001) on mixed selective 

separability, with higher separability in the lPFC compared to the pAC and no main effect of task 

or interaction with task (p > 0.1).   

Collectively, these results support the conclusion that left lPFC selectively encodes task-

relevant information with a geometry of intermediate dimensionality, non-linearly mixing task-

relevant information to enhance separability along several neural dimensions. In support of the 

task-tailored hypothesis, separability in the lPFC was preferentially enhanced for neural 

dimensions encoding task variables. On the other hand, the pAC employs a low-dimensional 

geometry with pure selective coding primarily of auditory information, regardless of whether it is 

task-relevant.  

Task structure shapes the generalizable coding of task features in lPFC 

A key feature of task-tailored representations is supporting the generalization of certain 

task variables and their combinations at the cost of separability along other variables or their 

combinations. We next assessed the extent to which left lPFC representational geometries 

support generalization. We again trained linear SVMs to decode the three stimulus features and 

the response category using a leave-one-run-out cross-validation procedure. However, this time, 

the SVMs were trained on the patterns associated with half the trial types (two for each level of 
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the decoded feature), and tested on the patterns associated with the remaining trial types from the 

left-out test run. Therefore, the SVMs were evaluated based on their cross-classification 

generalization performance (CCGP, Fig 4A, right panel), a measure that assesses the extent to 

which the coding of the relevant feature is abstract24. For the maximally high-dimensional 

geometries where different task states are randomly distributed in multi-dimensional neural 

space, CCGP is expected to be at chance levels. For lower-dimensional geometries in which task 

states sharing the same feature tend to cluster together, CCGP is expected to be systematically 

above chance levels24.   

The two tasks differed in terms of which task variables were abstractly coded by this 

measure (Fig 4D, left panel). In the flat task, CCGP was reliably above chance for the response 

category in left lPFC parcels (t = 4.0, p = 0.001), but not for any of the individual stimulus 

features (all ps > 0.1). In the hierarchy task, CCGP was reliably above chance levels for the 

auditory feature (left lPFC: 54.1%, t = 6.9, p < 0.001; right lPFC: 52.8%, t = 7.1, p < 0.001), but 

not the response category or other stimulus categories. Paired t-tests confirmed that CCGP for 

the auditory dimension was significantly higher in the hierarchy task than the flat task (t = 5.8, p 

< 0.001) while CCGP for the response category was significantly higher in the flat task (t = 3.8, 

p = 0.001). In other words, in each task, left lPFC privileged the abstract coding of one task 

variable.  

Finally, we examined abstract coding in the broader set of 35 dichotomies in the lPFC. 

After correcting for multiple comparisons, CCGP in the flat task was significantly above chance 

levels in only 1/35 dichotomies, which was the response category. In the hierarchy task, 5/35 

dichotomies showed above-chance CCGP, one of which was the auditory feature. Each of the 

four other abstractly coded dichotomies reflected the aligned coding of categories specific by 
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groups of three-way conjunctions, though it remains unclear whether this alignment has any 

significance for task execution.  

 In the pAC (Fig 4D, right panel), as expected, CCGP was above chance for the auditory 

feature (flat task: t = 3.2, p = 0.004; hierarchy task: t = 3.9, p = 0.001), which is consistent with 

pure selective coding. No other feature was abstractly coded in either task (ps > 0.1).  

Collective, analysis of the cross-generalizability of lPFC representations showed that 

abstract coding is observed in a very small set of dichotomies, one of which reflects an important 

task variable. Crucially, in support of the task-tailored geometry hypothesis, different task-

relevant dimensions were coded in abstract format across the two task structures. Having 

established these characteristics of lPFC control representations that differentiate it from the 

control region, pAC, we now direct our focus on lPFC and characterizing the geometry of the 

control representation across the two tasks more specifically. 

 

Local structure of lPFC representational geometry of the flat task shows high separability 

with no evidence for abstraction 

The dominant global feature of the lPFC representation of the flat task is the coding axis 

encoding the XOR response categories. Patterns associated with each response category tend to 

cluster together on respective sides of a hyperplane separating the categories along this coding 

axis. We further characterized the local structure of these clusters, asking whether it is low or high-

dimensional and if it is aligned across the clusters. To this end, we estimated hemodynamic 

response patterns in left lPFC parcels for 16 trial types, defined by the three stimulus features and 

the motor response mapping (i.e., relative location of the symbols). These were separated into two 

sets based on which response category they were associated with. For each set, we trained a set of 
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linear classifiers to decode all identifiable task variables, separability and abstraction. And, finally, 

we asked whether these representations were aligned across the two clusters.  

A total of 15/35 dichotomies in one category cluster and 9/35 in the other category cluster 

were decoded above chance levels. Decoding accuracies (Fig 5A) were significantly above chance 

levels for all identifiable task-relevant dichotomies (visual feature 1: 51.6%, t = 4.5, p < 0.001; 

visual feature 2: 51.2%, t = 3.3, p = 0.004; auditory feature: 51.5%, t = 4.2, p < 0.001; motor 

response: 51.1%, t = 4.2, p < 0.001) with no significant differences across the clusters (ps > 0.1). 

Moreover, none of these local representations were abstract (Fig. 5C), including those encoding 

task variables with CCGP not reliably above chance for any of the dichotomies (all ps > 0.1). These 

results show that the representation of the flat task in the left lPFC is organized locally for high 

separability at the cost of generalizability.  

Finally, we tested the extent to which the axes coding different task variables were aligned 

across the two context clusters. If each context is encoded in distinct subspaces, then these axes 

are predicted to be orthogonal. We trained the classifier to decode each dichotomy on the patterns 

of one response category and tested it on the patterns from the other category. Above-chance 

performance on the cross-generalization would demonstrate aligned coding, indicating some 

degree of representational overlap, while a failure to cross-generalize would be consistent with 

orthogonal coding. We also directly estimated the angle between the coding axes for each task 

variable across the two contexts.  

Cross-category decoding accuracies were significantly above chance levels only for visual 

feature 2 (51%, t = 2.4, p = 0.025, BF10 = 2.4). The mean angle (Fig. 5F, left panel) between the 

coding axes for visual feature 2 was slightly below orthogonal (86.2°, p = 0.03), but was no 

different from orthogonal for any of the other features (p > 0.1) Therefore, there appeared to be 
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minimal representational alignment across the two contexts. 

In summary, these results build up a detailed picture of the representational geometry of 

the flat task in the left lPFC. Globally, this geometry consists of two clusters separated along a 

dominant axis that encodes the XOR response categories. Within this global picture, each cluster 

is locally organized into a geometry which supports linear readout along many dimensions 

including those that do not encode the main task variables, but not in abstract form. The clusters 

representing the two response categories appear to be independently organized such that axes 

encoding the same dimension are not always aligned across the two clusters.  

 

Local structure of left lPFC representational geometry in the hierarchy task is low-

dimensional and recapitulates task structure   

The dominant global feature of the lPFC representation of the hierarchy task is the coding 

axis encoding the latent context signaled by the auditory dimension. Patterns associated with each 

latent context tend to cluster together on respective sides of a hyperplane along this coding axis. 

We further characterized the local structure of these context clusters, as in the case of the flat task.  

Within each context, only 1/35 dichotomies were decodable above chance levels, and in 

each case, it corresponded to the context-relevant stimulus feature required for the decision. In 

context 1, decoding accuracies (Fig. 5B) were reliably above chance only for stimulus feature 1 

(51.8%, t = 4.1, p < 0.001), while in context 2 this was true only for stimulus feature 2 (51.9%, t 

= 3.7, p = 0.001). A paired t-test confirmed stronger coding of the context-relevant feature 

compared to the context-irrelevant feature (t = 5.1, p < 0.001). Moreover, the local representation 

of the context-relevant stimulus feature was abstract, with CCGP (Fig. 5D) being reliably above 

chance (51.3%, t = 5.8, p < 0.001). Note that the context-relevant stimulus category is confounded  



 

TASK STRUCTURE SHAPES PFC GEOMETRY 

 30 

  

Figure 5. Properties of the local representation in the flat (orange) and hierarchy(purple) 
task. Local representational content was strikingly different across the task structures (A) In 
the flat task, all task variables could be decoded above chance levels in each category cluster. 
(B) In the hierarchy task, only the context-relevant stimulus feature is decoded above chance 
levels in each context cluster. (C) In the flat task, CCGP was at chance levels for all task 
variables. (D) In the hierarchy task, CCGP was above chance for the context-relevant 
stimulus feature in each context. (E) Local separability was starkly different across the two 
task structures. Pooling across the two category clusters, 24 dichotomies were linearly 
separable in the flat task while only 2 were linearly separable in the hierarchy task (E, left 
panel). Local shattering dimensionality was also significantly higher in the flat task. (F) 
Local representations were not aligned across clusters in either the flat task (F, left panel) or 
the hierarchy task (F, right panel). Mean angles between coding axes for the same variable 
across clusters were close to orthogonal and significantly higher than the within-cluster 
angles. Mean angles pool across all decodable variables. All error bars reflect 95% 
confidence intervals.  
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with response category and this finding could also be interpreted as the coding of the 

decision.   

Finally, we tested whether the axes encoding the context-relevant stimulus feature across 

the two contexts were aligned or orthogonal. Cross-context decoding accuracies were not 

significantly above chance levels (49.8%, t = -0.6, p > 0.1), and the estimated angle between the 

respective coding axes across the two contexts was 89.4 degrees (Fig. 5F, right panel) and not 

significantly different from orthogonal (p > 0.1). Therefore, this analysis suggested that the lPFC 

learns orthogonal representations of the context-relevant stimulus features across the two contexts.   

    In summary, the hierarchy task was represented in lPFC with a geometry that 

recapitulated its hierarchical structure. Globally, this geometry consists of a dominant axis that 

encodes the higher-level context in an abstract, generalizable format, thus producing distinct 

contextual clusters. Within each cluster, the local geometry preferentially encoded only the 

context-relevant stimulus dimension and did so in an abstract, generalizable format. These 

subspaces appear to be independently organized such that axes encoding the same stimulus 

dimension may not be aligned across subspaces.  

 

Confirmatory analysis with Representational Similarity Analyses 

We confirmed the detailed picture of the task-tailored geometries of each task built up 

over individual decoding analyses with representational similarity analysis (RSA) that permits a 

more global assessment 42. For each parcel, and separately for each task, we estimated a 

representational dissimilarity matrix (RDM) of the pair-wise, cross-validated Mahalanobis 

(‘crossnobis’) distances43 between the multi-voxel patterns associated with each of the eight trial 

types. These RDMs were then averaged across lPFC parcels in each hemisphere. Using multiple 



 

TASK STRUCTURE SHAPES PFC GEOMETRY 

 32 

linear regression, we estimated the contribution of model RDMs that predicted pairwise 

dissimilarities based on different features of the representational geometry. This approach 

ensured that we tested the unique effects of each task variable, which is difficult to do with 

decoding analyses. 

 For the flat task, we tested model RDMs (Fig. SF1) that predicted pair-wise distances based 

on the three stimulus dimensions and the response category (Fig. SF2A). Confirming the results 

from the decoding analyses, we found evidence for coding of the response category (left lPFC: t 

= 2.2, p = 0.004) which explained unique variance in the pattern distances over and above any 

effects of the stimulus feature RDMs, though the effect was weak.  

For the hierarchy task, we tested model RDMs that predicted pair-wise distances based 

on the three stimulus dimensions, the response category, or a context-dependent representation 

that preferentially encoded the context-relevant stimulus feature (Fig. SF2B). Confirming the 

results from the decoding analyses, we found evidence that both the auditory dimension/context 

(left lPFC: t = 9.9, p < 0.001; right lPFC: t = 8.1, p < 0.001) and the context-dependent 

representation of the relevant feature (left lPFC: t = 5.2, p < 0.001; right lPFC: t = 4.0, p < 

0.001). In addition, we also found evidence for the coding of the response category in the left 

lPFC (t = 2.8, p = 0.01). Therefore, the RSA confirms both the global and local features of the 

task-tailored representational geometry in the hierarchy task.  

 

Discussion 

Collectively, our results offer strong evidence that the lPFC learns task-tailored 

representational geometries to accommodate different tasks. In this case, lPFC representations 

were shaped differently to follow flat vs hierarchical task rule structures. Further, comparison of 
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these different geometries provides evidence for the general principles that shape control 

representations in the lPFC. We elaborate these observations below. 

In the flat task, combinations of three inputs were mapped, in a non-linear/XOR fashion 

to separate response categories. Correspondingly, the lPFC representational geometry was 

defined by a global axis abstractly encoding the XOR response categories (i.e., the outputs 

needed to select a motor response). Within the subspace defined by each response category, we 

observed a local geometry in which several task variables and their mixtures were linearly 

separable, with no evidence of local abstraction. Moreover, these local representations were not 

aligned across the subspaces. In other words, the lPFC representation geometry in the flat task 

was characterized by partial compression that afforded abstract coding of the task-relevant 

response categories. Sensitivity was maintained to changes in individual stimulus features, but 

only within the context of each response category.  

This task-tailored geometry strikes a compromise between generalizability and 

separability. The global axis of the geometry accords with the demands of the flat task, where the 

primary basis for any two inputs being similar or not is their respective arbitrary membership in 

one or the other categories. Mapping inputs onto a one-dimensional manifold that only encodes 

the response categories provides for a robust readout of the required task output.  

Indeed, the local structure observed within each response cluster is not strictly required 

for the downstream readout of the response category; a fully compressed global axis with no 

separation among individual stimulus inputs could support responding. So, why is this higher-

dimensional local structure evident? Of course, one possibility is that this information is used for 

controlling other aspects of the task than responding, such as top-down attentional signals to 
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perceptual processing and categorization. As such, this local structure may be shaped as much as 

the global axis. Though why these putative stimulus-level control signals would differ as a 

function of the response category is not immediately clear, which limits this interpretation.  

Another possible account of this local structure is that it reflects the vestiges of an 

expressive, task-agnostic representation. Participants may initially represent the task inputs on a 

high-dimensional manifold during the initial stages of learning the task and then learn to 

compress to a one-dimensional manifold with experience. Though, as elaborated below, the 

system is biased to preserve expressivity due to how it discovers structure. 

In the hierarchy task, the lPFC representational geometry fully recapitulates the structure 

of the hierarchy task. In this case, the geometry was dominated by a global axis abstractly 

encoding the auditory stimulus dimension, which signaled the superordinate rule context (e.g., 

attend to face versus attend to scene). Though we did not use different input domains than 

auditory to cue the context, we interpret this axis as likely representing the context rather than 

the auditory modality per se. Not only is this interpretation in line with previous findings33, it is 

also the most parsimonious account of our own data. In the flat task – wherein the auditory 

dimension did not act as context – there was no such organization around this auditory feature. It 

was only when auditory inputs cued the context, during the hierarchy task, that this axis of 

organization was evident.  

This context coding axis defined context-dependent subspaces within each of which a 

locally low-dimensional geometry abstractly encoded only the context-relevant stimulus feature 

necessary for selecting a motor response. There was no evidence for the coding of the context-

irrelevant stimulus feature within the contextual subspaces. Moreover, we found no evidence that 
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the representation of the context-relevant stimulus feature was aligned across the two contexts, 

consistent with the representations in the two contexts being orthogonal25,44. This suggests that 

the lPFC employs separate context-specific readouts to identify the critical task-relevant output 

required to select a motor response, while minimizing the influence of potentially conflicting 

context-irrelevant inputs.  

 lPFC representational geometry we observe in the hierarchy task is consistent with prior 

studies in both macaques and humans, though we note that no prior study has compared the 

representational geometry of multiple tasks in the same participants. Roy et al. (2010) observed 

preferential coding of context-relevant stimulus categories, with largely segregated populations 

encoding the categories across the two contexts45. Flesch et al. similarly observed orthogonal, 

low-dimensional representations of the context-relevant feature with compression of the context-

irrelevant feature in a broad frontoparietal cortex network, also demonstrating that such a 

geometry emerges in neural networks trained on a hierarchically structured task in a rich learning 

regime25. More generally, orthogonal coding has been consistently observed in lPFC in task 

settings with potential for interference, such as between the coding of targets and distractors44, 

and between previous and current task states31, suggesting a specific role for lPFC in encoding 

orthogonal subspaces in the service of cognitive control29.  

While our observation of local compression of irrelevant inputs in the hierarchy task is 

consistent with prior observations across species, our results do diverge in some respects from at 

least one observation in the non-human primate. Specifically, Mante et al. reported robust coding 

of both context-relevant and context-irrelevant stimulus information in the frontal eye fields 

(FEF) of macaques, with no evidence for compression46. In their study, context-dependent 
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selection occurred via a mechanism operating through dynamics that enabled input from the 

relevant feature to push neural activity along a common response axis across contexts. While 

such a common response axis has been also observed in the lPFC24, we found no evidence for 

aligned coding of the response category across contexts in the hierarchy task, in line with other 

human studies25.  This discrepancy may reflect the fact that training primates on such tasks 

typically involve a compositional shaping process where different components of the task are 

progressively introduced, with the response-only component introduced early before the 

categorizations are introduced. This may encourage the learning of a shared response axis. On 

the other hand, our participants were given verbal instructions for all task components in one go, 

with the differences across the two contexts emphasized.  

While the task-specific geometries we have uncovered here are consistent with 

observations made by previous studies across species, our study is unique in that we tested the 

representation of these different task structures in the same participants, allowing us to directly 

address the question of how differently structured tasks are accommodated in the human lPFC. 

While we found clear evidence for distinct, task-tailored representations for the two very 

different task structures we studied, even more notable were the striking similarities in the 

general representational strategy employed by lPFC across the two tasks. The tasks did not differ 

either in what task variables were decodable, the overall separability, mixed-selective 

separability, or the overall generalizability of the lPFC representation. For both task structures, 

less than half of the possible dichotomies were linearly separable, and these included 

dichotomies that required non-linear mixed selective coding. And, across both task structures, 

separability was preferentially enhanced for dimensions encoding task variables at the cost of 

other dimensions. Therefore, beyond the characterization of the detailed structure of the task-
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tailored geometries, our results comparing the two task structures illuminate the general 

representational strategy lPFC employs, highlighting a set of key principles governing the lPFC 

neural code.   

First, lPFC preferentially encodes a diversity of environmental variables that are relevant 

to the task at hand, while suppressing orthogonal, task-irrelevant variables. This deviates 

strongly from the coding principle of putative input regions, like the primary auditory cortex, 

which obligatorily encodes auditory variables in the environment, regardless of their task-

relevance and shows no evidence of mixing with other input features. This principle of diverse 

lPFC coding accords with the well-replicated finding that lPFC neurons code for information 

about whatever task is currently being performed.  

Second, lPFC representations are not obligatorily low or high dimensional, but can reflect 

a range of possible compromises between a maximally compressed, pure-selective code and a 

maximally expanded, highly conjunctive code based on the needs of the task28. This flexible 

representational format enables learning processes to produce a variety of task-tailored 

geometries. Indeed, for most tasks, lPFC representations will be of intermediate dimensionality 

because it affords linear separability for several task variables and their mixtures, along with 

abstract, generalizable coding of a small number of critical task variables.  

What variables are selected for abstract coding? In our study, across both task structures, 

the key output variable was coded abstractly.  We suggest that one key driver for abstract coding 

is the need for robust, generalizable readout. In the flat task, the response category was coded 

abstractly. An abstract representation of the task output allows for the same geometry to be re-

used in novel situations where the response categories are preserved, as has been observed in 
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macaques32 and humans47. In the hierarchy task, the context-relevant stimulus dimension was 

coded abstractly at the local level. Not only does this again fully determine the response 

category, compression over the irrelevant dimension makes it more robust to a salient source of 

distraction.   

Third, the lPFC organizes neural responses into orthogonal subspaces. Across both task 

structures, we observed distinct clusters of neural responses – in the flat task these were 

organized by response category, while in the hierarchy task, these were organized by context. 

Each cluster showed a unique local organization which did not align with that of the other 

cluster, strongly suggesting orthogonal coding.  

An advantage of such an organizational scheme is that it affords protection for coded 

information from interference. In the hierarchy task, a key source of conflict is that between the 

context-relevant and context-irrelevant stimulus features which can drive different responses. By 

organizing neural responses of each context into orthogonal subspaces, the lPFC could 

selectively code only the context-relevant stimulus feature in the relevant contextual subspace, 

suppressing the context-irrelevant information and thus minimizing interference. Indeed, 

orthogonal coding has been widely observed in macaques14,15,45,48-50 and human lPFC25,31 and has 

been implicated in a variety of settings that demand the minimization of interference.   

Fourth, and more speculatively, the lPFC may combine a default preference for high-

dimensional coding in the lPFC with learning-driven dimensionality reduction for discovering 

structure. A surprising novel finding in our study is the strikingly different local organization we 

observe across the task structures. As discussed above, the local structure in the hierarchy task 

recapitulates the lower-level structure of the hierarchy task where only one stimulus feature is 
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context-relevant. On the other hand, it is less clear how orthogonal coding of locally high-

dimensional structures is related to the demands of the flat task. Indeed, the flat task has no 

obvious sources of interference that would be reduced with this subspace organization and no 

obvious requirement for high separability at the local level. 

One possible account of these findings is that orthogonal coding may be a general 

property of lPFC coding, arising not from the tailoring of the representation to the task, but from 

a default preference for high-dimensional coding. On this view, the lPFC would initially always 

encode its inputs on a high-dimensional manifold, where every response is orthogonally coded, 

with learning processes reshaping the manifold, retaining separability only along dimensions that 

the task requires. The hierarchy task has both global (i.e., mappings are consistent within each 

context, but different across each context) and local (i.e., only one feature is relevant within each 

context) structure that can be discovered by a learning process, while the flat task had only 

global structure and no local structure. Therefore, the lPFC responses in the hierarchy task were 

organized in a locally low-dimensional organization which privileged the coding of the context-

relevant feature, while the flat task remained locally high-dimensional.  

Several studies in macaques are consistent with this possibility. Wojcik et al. in their 

recent study found that lPFC representations are high-dimensional at the onset of learning, being 

slowly shaped to be task-tailored with experience32. Bernardi et al. found evidence for 

representational geometries that incorporated abstract coding by minimally altering a high-

dimensional code. Finally, high-dimensional coding has been observed in the lPFC when the task 

itself does not impose a low-dimensional structure27.  
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An account that combines a natural preference for high-dimensional coding in the lPFC 

with learning-driven dimensionality reduction for discovering structure in tasks may explain how 

the lPFC resolves the separability vs generalizability tradeoff. Encoding novel inputs on a high-

dimensional, task-agnostic manifold by default allows sensitivity to a variety of potentially 

relevant task variables in the initial stages of learning, supporting expressivity. With learning, 

this manifold may be reshaped to make it task-tailored by enhancing both the separability and 

generalizability of key task variables while reducing them for others. Such task-tailored 

representations would then support generalization to other tasks with similar structures as has 

been observed in macaques32 and humans47.  

Such generalization would dramatically speed up learning in novel settings and may 

explain why, in our study, participants learned the hierarchy task much more rapidly than the flat 

task. For the hierarchy task, participants were likely able to re-use existing representations of 

rules learned in other contexts. On the other hand, given the contrived nature of the XOR 

classification rule, they may have had to build the representation from scratch. This is in line 

with accounts of faster hierarchical rule learning in a more traditional reinforcement learning 

setting, as well9,51. Given that we did not directly measure the neural representations in lPFC 

during the early stages of learning, however, we cannot directly test these predictions. Doing so 

will be an important direction for future research.     

Our study has some limitations. The use of fMRI constrains our ability to examine 

within-trial dynamics in the representational geometry. Prior work using electrophysiology in 

macaques15,52-54, and using EEG in humans55,56, has documented marked shifts in the 

representational geometry within a trial on the order of hundreds of milliseconds. Our estimates 
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of the representational geometry, therefore, reflect an aggregate measure of this complex 

trajectory.  

Several recent EEG studies have documented the importance of conjunctive 

representation of context, stimulus and response as being critical for the timing, accuracy and 

control of context-dependent action selection, though their locus in the brain is presently 

unknown55-58.  

Our results in the hierarchy task accord with these observations in that we observe 

context-dependent coding of the relevant stimulus (i.e., a context-stimulus conjunctive code). A 

recent EEG study documented a transient expansion of representational dimensionality in the 

moments before successful response selection which coincided with stable coding of conjunctive 

representations56. Given the relatively high separability and the context-dependent nature of the 

coding we observed in the hierarchy task, one possibility is that our fMRI models capture this 

moment in the representational dynamics though, we cannot be sure of this possibility with only 

BOLD fMRI measurements. 

Another limitation related to fMRI concerns the notoriously noisy lPFC BOLD 

measurements40. To maximize power for detecting multivariate effects in lPFC, we employed a 

deep sampling strategy59-63 and restricted our sample to participants who could achieve a high 

level of accuracy and speed in both the flat and hierarchy task within a fixed training period. 

Therefore, our results only apply to other similar, highly-trained and high-performing 

participants and may not generalize to participants who take longer to learn the task or use a less 

effective strategy to respond, particularly in the more difficult flat task. This leaves open 

important questions about individual differences. For example, would participants who take 
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longer to learn to represent the task with a qualitatively different, poorly adapted geometry, or 

would they employ an inefficient version of the same geometry as what we identified? 

Nonetheless, our results reveal that the lPFC can accommodate tasks of different structure with 

task-tailored representational geometries. 

Finally, our study was focused specifically on lPFC parcels from one functional network, 

which led us to average over these spatially separated parcels in the lPFC, sacrificing some 

spatial specificity in the process. At the same time, we have not examined other lPFC parcels that 

have been localized to distinct functional networks. This leaves open the question of whether 

representations in other networks within lPFC may be driven by different organizing principles, 

and how they might collectively interact to support controlled behavior.  

In conclusion, we tested two disparate accounts of how the lPFC accommodates tasks of 

different structures, finding clear evidence for task-tailored representations of task-relevant 

environmental variables in well-trained human participants. By comparing and contrasting the 

representational geometries in lPFC across two disparate task structures, we identify four key 

principles that govern lPFC control representations: i) diverse coding of task-relevant inputs, ii) a 

flexible representational format that supports the coding of task-tailored representations, iii) 

orthogonal coding that reduces interference, and iv) a default preference for high-dimensional 

coding in the lPFC with learning-driven dimensionality reduction for discovering structure. 

 
 
Methods 

Participants 
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All participants in the main experiment were right-handed; had normal or corrected-to-

normal vision and hearing; and were screened for the presence of psychiatric or neurological 

conditions, psychoactive medication use. Participants who participated in the fMRI scanning 

phase were additionally screened for contraindications for MRI. All participants gave their 

written informed consent to participate in this study, as approved by the Human Research 

Protections Office at Brown University. Participants were monetarily compensated for their 

participation at each session and received a bonus payment if they completed all 11 scanning 

sessions. 

A total of 94 participants (58 female, 33 male, 3 declined to answer; mean age = 22.9 ± 

4.7) were recruited during the behavioral training phase of the study. In this phase, participants 

learned the two tasks (detailed below) and performed a series of practice blocks, with the 

instruction to maximize performance. Those who achieved the a priori performance criteria of > 

85% overall performance with >80% performance on each of the 8 trial types within 4 days of 

training for each task were invited to participate in the scanning (fMRI) phase of the study.  

Out of the 100 total participants, 5 chose to participate in a different study, 22 withdrew 

from the study before completing the training phase, and an additional 37 did not meet 

performance criteria on at least one of the tasks. The remaining 36 participants were invited to 

the subsequent scanner phase. Of these, 3 participants were excluded due to contraindications for 

MRI, and 13 participants either withdrew before completing all sessions or were withdrawn for 

failing to comply with instructions. 20 completed the full study and are included in the analyses 

presented here (12 female, 2 non-binary, mean age 22.4 years, SD = 4.5 years).  

 

Stimuli 
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Participants performed two categorization tasks that mapped multidimensional stimuli 

consisting of 3 binary features onto abstract categories symbolized by simple shapes. The three 

stimulus features included two naturalistic images and an auditory clip of a spoken number or 

word. Two stimulus sets were employed for each participant, one for each of the tasks. One set 

consisted of naturalistic images of faces (adult or child) and scenes (indoor or outdoor), along 

with auditory clips of spoken numbers (low or high). The other set consisted of naturalistic 

images of animals (birds or mammals) and objects (edible or inedible), along with auditory clips 

of spoken words (nouns or verbs). The mapping of stimulus sets to tasks (hierarchy or flat as 

described below) was counterbalanced across participants. The same set was always used for a 

given task within-participant. 

A total of 13,600 naturalistic images (faces, scenes, animals, objects) and 96 audio clips 

(spoken words and numbers) were employed across the study. During the behavioral training 

phase, trial-unique images were employed within a single block, but images could be repeated 

across blocks. In the scanning phase, the images were trial-unique across all blocks such that no 

image was presented twice during the entire scanning phase across all days. However, images in 

the scanning phase were sampled from the underlying set, and therefore may have been seen by 

participants during the training phase. On average, each image was used on 1.6 trials across the 

entire study per participant. Given the noisy environment in the scanner and the need to use high-

quality auditory stimuli, audio clips were not trial-unique but included multiple speakers 

producing each word/number. Each audio clip was used on average twice in each scanning run 

and the same set of auditory clips were repeated across runs. On average, each clip was used 91 

times across the entire study.   



 

TASK STRUCTURE SHAPES PFC GEOMETRY 

 45 

Stimuli: 

Stimuli consisted of two visual images and an auditory, spoken word. All three stimulus 

components were systematically manipulated along two orthogonal dimensions, one of which 

was relevant to the tasks and one was irrelevant. Two stimulus sets were used across the study 

which are detailed below.  

Stimulus set 1: 

Face Images: Face images were systematically selected to vary along two orthogonal dimensions 

of age (child vs adult) and hair length (short vs long). Only the child vs adult dimension was 

relevant for either task. Simulated face images were first generated using StyleGAN2 (Karras et 

al., 2019). These faces were then mapped to the binary categories of adult (defined as someone 

judged to be over 35) or child (defined as someone judged to be under 18). Orthogonally, they 

were mapped to categories of people with either short hair or long hair. Age mappings were 

validated by independent raters (N=15, mean age 31.6, SD 2.1, 9 male, 6 female) on Amazon 

Mechanical Turk who made forced-choice child vs adult decisions about each image. Images were 

only included in the final stimulus set if at least two researchers and two MTurk participants agreed 

on the age category. Participants were informed at the end of the experiment that the faces did not 

depict real humans.  

Scene Images: Scene images were systematically selected to vary along orthogonal dimensions of 

indoor vs outdoor and scenes with vs without people. Only the indoor vs outdoor dimension was 

relevant for the tasks. All scene images were obtained from the Places205 dataset which contains 

naturalistic scenes from 205 different categories (Zhou et al., 2017).   

Number Audio clips: Spoken number stimuli were systematically created to vary along orthogonal 

dimensions of magnitude and parity. Thus, numbers could be low vs high, as well as odd vs even. 
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Only the low vs high dimension was relevant for either task.1s long audio clips contained spoken 

number words “three”, “four”, “eight”, and “nine”. Clips were generated by an online text-to-

speech converter (www.naturalreaders.com) using six different synthetic voices.   

Stimulus set 2:  

Animal Images: Animal images were systematically selected to vary along orthogonal 

categorical dimensions of birds vs mammals and domestic vs wild, with only the birds vs 

mammals dimension being relevant to the tasks. Animal images were manually screened and 

assembled from a variety of online sources including the iNaturalist dataset 

(www.inaturalist.org), Pixabay (www.pixabay.com) and Google Images (images.google.com) to 

minimize ambiguity. Images were only selected if they unambiguously depicted one or two 

animals of the same type.  

Object Images: Object images were systematically selected to vary along orthogonal dimensions 

of edible vs inedible and natural vs manmade. Only the edible vs inedible dimension was 

relevant to the tasks. Object images were manually screened and assembled from ImageNet64 and 

the THINGS database65 to minimize ambiguity.  

Word Audio clips: Spoken word stimuli were systematically created to vary along orthogonal 

dimensions of noun vs verbs and words starting with the /d/ vs /l/ sounds. Only the noun vs verb 

distinction was 1s long audio clips consisted of the spoken words, “door”, “lake”, “lose” and 

“dig”. The stimuli were recorded in-house using a Logitech Blue Snowball microphone in a 

sound-proofed room.  

In addition to trials with these complex stimuli, both tasks also featured infrequent “null” 

trials which presented two images of random black and white noise along with a pure 300 Hz 
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tone. The noise images and the tone were not trial-unique.  

 

Task design 

Participants learned to perform two categorization tasks with different structures, labelled 

as the ‘flat task’, and the ‘hierarchy task’. Each task required them to employ task-specific rules 

to select the category that one of 8 stimulus types (consisting of three binary features) belonged 

to, and then indicate their choice by pressing one of two keys. Across both tasks, trials followed 

the same structure (Fig. 1).  

Each trial began with the simultaneous presentation of two images side-by-side at the 

center of the screen along with the audio clip over headphones, for 1 s. This stimulus display 

provided the information needed to make the category decision based on the rules for that task. 

The left-right location of the two different image types (i.e., faces and scenes for stimulus set 1 

or animals and objects for stimulus set 2) was randomized across trials and controlled such that 

each trial-type had an equal number of each possible configuration.  

Simultaneously with the images and auditory clip, a response panel consisting of two 

shapes also appeared at the bottom of the screen to the left and right of the fixation cross (Fig. 1.  

The shapes differed by task. Specifically, a square and circle were presented for the flat task, 

whereas a triangle and pentagon were presented for the hierarchy task. Each shape represented 

one of the two possible categories and their position (left or right of fixation) on the screen 

indicated which key (left or right) the participant should press to indicate their selected category.  

The left-right position of the two shapes varied randomly from trial to trial such that the 

position would be the same as the previous trial on approximately 50% of the trials, and each 

trial-type was associated with an equal number of left and right responses. This ensured that the 
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participant’s motor response was not confounded with their categorization decision across trials. 

The response panel was presented for 2 s, which was also the window during which the 

participants had to respond. If participants pressed a key during the response window, the 

corresponding shape would turn gray. 

Following the response period, there was an inter-trial interval (ITI) of 2-10s during 

which a white fixation cross was presented on a black background. During the behavioral 

training phase participants were also provided feedback. Specifically, the fixation cross would 

turn green or red for the first 500ms of the ITI to indicate correct or incorrect responses, 

respectively. During the scanning phase, participants did not receive feedback and the fixation 

cross remained white throughout the inter-trial interval.  

While the same stimulus displays could be used for either task, the two tasks differed in 

their rule structures, leading to different responses on the same inputs across participants. Note 

that in both cases, participants were instructed about the rules explicitly, as described below. 

Nonetheless, they had to learn to use the rules efficiently, which required practice. We elaborate 

rules and procedures for each task below. 

Flat Task: The mapping of stimuli to categories for the flat task is shown in Fig 1A (left 

panel). The mapping in the flat task was based on a latent, three-dimensional XOR or parity rule. 

Specifically, two stimuli which differ in an odd number of features belong to different categories, 

while two stimuli which differ in an even number of features belong to the same category. This 

ensures that for every trial, all three features are necessary to make a correct categorization and 

prevents any grouping within the rule structure, which can simplify the problem beyond two 

abstract categories. Importantly, however, this XOR rule was never described to the participants. 
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Rather, they were only shown the mapping of each set of stimuli into the two categories and 

were asked to memorize these arbitrary mappings (see procedures below). 

Hierarchy Task: The mapping of stimuli to categories for the hierarchy task is shown in 

Fig. 1A. The hierarchy task is organized around two contexts, defined by the auditory feature. 

The context determines which one of the other two stimulus features is relevant to the categorical 

decision. For example, a rule might be “if you hear a high number, the face determines the 

category: an adult face indicates the square category and a child's face indicates the circle 

category.” So, while all three stimulus features were available on every trial and were relevant 

across the contexts, on any single trial only two are ever necessary to make a correct category 

decision. Note that one could, in principle, also perform the hierarchy task using the same 

memorization of stimulus groupings to categories used for the flat task. Nevertheless, the 

hierarchical rule was given explicitly to participants, and they were encouraged to follow a 

hierarchical strategy. This ensured that participants were oriented to different task structures.  

Rules were presented at the start of each block during training and participants were 

encouraged to take as much time as they wanted to review the rules. They received veridical 

feedback on each trial during the training phase.  

 

Behavioral Training Protocol 

During training, blocks contained 11 of each of the eight main trial types and the null 

events. ITIs were varied between 2 and 8 seconds. Training blocks took approximately eight 

minutes to complete.  

Participants learned the two tasks sequentially outside the scanner. Behavioral training 

was carried out over up to four 90-minute lab visits during which the participant practiced as 
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many blocks as time would allow. On average, participants completed 7 blocks per session, each 

lasting approximately 8 minutes. Participants returned for a minimum of 2 and up to 4 training 

sessions until they achieved a session accuracy of 85% overall and 80% accuracy on each of the 

eight individual trial types. On average, the 20 participants who completed all portions of the 

study required 2.7 sessions to learn the flat task and 2 sessions to learn the hierarchy task.  

Participants were more likely to fail to reach the criterion on the flat task, which was 

harder to learn and perform. Thus, participants were always trained on the flat task first to 

efficiently identify participants who did not meet the performance criteria.  While it is possible 

that learning the flat task first influenced the subsequently learned hierarchy task, we believe this 

is unlikely given that the two tasks shared no stimuli within-participant and had very different 

task structures. Nevertheless, participants were always trained on both tasks before any scanning, 

and the order of the tasks was counterbalanced during the scanning phase. In the scanned sample, 

ten participants learned the flat task with the face, scene, and number stimuli and the hierarchy 

task with the animal, object, and word stimuli; while the other ten had the task to stimulus set 

mapping reversed.  

 

fMRI Task Protocol 

 Participants were scanned for a total of eleven days, an initial scan day for structural, 

resting state and localizer tasks, and 5 successive days each for the two tasks. We describe the 

typical protocol below and any deviations are detailed in the supplementary materials (S1). After 

the initial scan day, half of the participants (N=10; five using each stimulus set to task mapping) 

were scanned while performing the flat task first, and the other half were scanned while 
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performing the hierarchy task first. All scans occurred between 7 and 11 am, and the ten task 

scans were performed within an average of 20 calendar days of each other (min=10, max=30). 

Before entering the scanner, participants reviewed the rules and practiced two blocks of 

the task they would be performing in the scanner that day to refamiliarize themselves with the 

rules. One block included trial-wise feedback, and the other had no feedback. In each session, 

participants performed five blocks of the task while being scanned, yielding a total of 25 blocks 

per task which translates into a total of 1975 task trials and 200 null trials during the performance 

of each task. Participants could review the task rules before each block of the task but did not 

receive any feedback on their performance. After the study, participants were debriefed on their 

strategies and thoughts about the tasks using a structured interview.  

 Trial sequences during scanning were counterbalanced such that each of the eight 

possible trial types followed itself and every other type of trial at least once during a block (64 

possible transitions), in addition to following null trials (8 additional transitions). To do this 

efficiently, we generated de Bruijn sequences using a published tool66. To create the full trial 

sequences, the final six transitions of each sequence were prepended to the start of their 

respective trial sequences. This process yielded sequences 87 trials long, with at least 9 instances 

of each of the eight main trial types in each block. A single block was presented during each 

scanning run.   

Inter-trial intervals (ITIs) were samples from a truncated exponential distribution with a 

mean of two seconds and a maximum of 10 seconds, rounded to the nearest second. Given the 

trial transition and task length, we generated 100k possible timing sequences and then chose the 

25 with maximum efficiency, calculated by averaging over all possible binary trial-type 

contrasts67. One trial sequence was used in each run and the mapping of trial sequence to run was 
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randomized such that specific stimuli were not associated with specific trial sequences across 

participants. All scanning runs began with six seconds of fixation and ended with 16 seconds of 

fixation. 

fMRI Scanning Protocol 

Whole-brain imaging was performed using a Siemens 3-T Magnetom PRISMA system 

with a 64-channel head coil. One high-resolution T1-weighted multi-echo magnetization 

prepared rapid gradient echo image (T1MEMPRAGE) was acquired as a structural image 

(repetition time (TR) = 2530 ms, echo times (TE) = 1.69, 3.55, 5.41, and 7.27 ms, flip angle = 7 

degrees, 176 sagittal slices, 1 × 1 × 1 mm voxels). This image is used for all normalization 

procedures for the data in this paper. On at least four of the task days, a high-resolution T1-

weighted magnetization prepared rapid gradient echo image was acquired; not further analyzed 

in this manuscript (TR = 1900 ms, TE = 3.02 ms, flip angle = 9 degrees, 160 sagittal slices, 1 × 1 

× 1 mm voxels). Whole brain functional volumes were acquired using a gradient-echo sequence 

(TR = 1000 ms, TE = 32 ms, flip angle = 64 degrees, SMS = 5, 65 interleaved axial slices 

aligned with the AC-PC plane, 2.4 × 2.4 × 2.4 mm voxels). Each task functional run lasted 534s.  

Soft padding was used to restrict head motion throughout the experiment, and a vitamin D pill 

was placed on the right side of the participant’s forehead to verify left-right orientation. Stimuli 

were presented on a 32 in monitor at the back of the bore of the magnet, and participants viewed 

the screen through a mirror attached to the head coil. Participants used a five-button fiber optic 

response pad to register their button press responses (Current Designs, Philadelphia, PA). 

Participants wore MR-compatible Avotech headphones. The sound volume was adapted for each 

participant at the start of each session. In addition to the BOLD signal, participants’ heart rates 

and respiration were measured during scanning sessions with an MR-compatible pulse oximeter 
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and breathing belt (Siemens). In a total of 24 runs across 5 participants during the scanning 

sessions of the hierarchy task, and 25 runs across 6 participants in the flat task, technical 

difficulties (e.g., uncharged or broken equipment, improper participant placement/calibration) 

prevented the collection of physiological data. The status of this equipment did not interfere with 

the collection of MRI data.  

fMRI Preprocessing 

Functional data were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). 

The quality of the functional data of each participant was first assessed through visual inspection 

and TSdiffAna (sourceforge.net/projects/spmtools/). Slice timing correction was carried out by 

resampling all slices within a volume to match the timing of a reference slice that was collected 

at 452.5 ms (i.e., closest to the halfway point of volume acquisition). Next, the effects of head 

motion during the functional runs were corrected with a three-step procedure. First, each volume 

in a run was registered to the first image in the run and individual run-mean was computed, and 

all run images were then registered to the run-means. using rigid-body transformation. 

Movement was assessed at this stage, within each run, to ensure that all volumes were within one 

voxel (2.4mm) of movement in all directions. No outlier volumes were detected under this 

criterion in the final sample. Next, these individual run-mean images were averaged to compute a 

global mean image across all runs. Finally, all volumes across all runs were registered to this 

global mean image. Anatomical images were also co-registered to this global mean. Data 

processed to this stage (slice time and motion corrected) were used for decoding and 

representational similarity analyses. 
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The anatomical T1MEMPRAGE image for each participant was normalized to MNI 

space and used to create a brain mask using the Brain Extraction Tool in FMRIB Software 

Library (fsl.fmrib.ox.ac.uk/fsl/fslwiki/). 

Regions of Interest 

We derived our regions of interest (ROIs) from the 400 parcel map from the Schaefer 

parcellation37 (www.github.com/ThomasYeoLab/Standalone_Schaefer2018_LocalGlobal) which 

have been previously mapped to a set of 17 functional networks defined by resting state 

connectivity38, specifically using the ten lPFC ROIs mapped to the “Control A network” (parcels 

128-132 and 330-334). Prior work on hierarchical tasks4,68,69 found that these regions are 

engaged in tasks similar to ours. Moreover, these regions were chosen because of their overlap 

with the multiple demand network which has also been identified in the macaque, where it 

includes the lPFC regions that provide the scientific premise for our hypotheses.  

In addition, we derived primary auditory cortex ROIs from a term-based meta-analysis on 

Neurosynth (www.neurosynth,org) using an association test to obtain a map of brain regions 

preferentially related to the term “primary auditory” 70. This map was cleaned up to remove non-

contiguous voxels outside the primary cluster and split into left and right auditory cortex.  

All ROIs were transformed into each participant’s native space using SPM12’s reverse 

normalization procedure. Following native space transformation, ROIs were masked to include 

only voxels which have at least an 80% probability of being gray matter, based on SPM12’s 

unified segmentation for each participant. The average number of voxels in each ROI in each 

participant’s native space is provided in the supplement (S2).  

General Linear Modeling of fMRI data 
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Functional data were analyzed under the assumptions of the general linear model (GLM) 

using SPM12. Regressors were convolved with SPM’s canonical hemodynamic response 

function (HRF) with time and dispersion derivatives. Models were fit to voxel-wise timecourses 

for the whole brain level and were defined in the same way for both tasks. GLMs were separately 

fit to unsmoothed, native space data from each run.  

We fit three separate GLMs. The goal of the first GLM (GLM1) was to estimate the 

activity related to each of the eight types of trials in each run separately for both tasks and to do 

so in as unbiased a manner as possible such that all eight estimates for a given run would be 

generated from equal amounts of trials and were balanced for confounding factors like associated 

motor responses. Specifically, all runs contained at least nine of each trial type, but if a 

participant made errors there would be fewer trials of certain types, leading to imbalanced 

amounts of data contributing to each activity estimate. That imbalance could bias decoding. 

Additionally, individual trial types could be associated with both left and right motor responses. 

An imbalance in the relative contribution of the two motor responses to different trial types could 

also bias decoding. To remove these biases, each of the eight trial types was randomly sub-

sampled to the performance of the worst trial type and to ensure an equal number of left and right 

responses. For example, if a participant got eight trials of type A correct and five trials of type B 

correct, the model would sample randomly from five type A trials for that run. Additional correct 

trials (the three additional type A trials) would be modeled by separate trial-type specific 

‘spillover’ regressors, as necessary. The same procedure was also used to balance motor 

responses associated with each trial type. These spillover regressors modeled the contribution of 

these trials to the voxel response, but they were not used for additional decoding or RSA 

analyses. The trials sampled to contribute to the main trial type regressors were chosen 
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randomly, and the results of further analyses were insensitive to which random subset were 

chosen.  

To summarize, then, for each run, GLM1 had eight main trial-type regressors, a single 

regressor each for all error trials and static trials, and as many additional spill-over regressors as 

necessary (between 0 and 7, with a mean of 6). Because of this conservative estimation 

approach, we dropped individual runs from additional analyses which would have fewer than 

four trials contributing to each of the main trial-type regressors.  (total n=15, n=4 flat task across 

all participants). On average, 6.6 trials contributed to each regressor in the flat task and 7.3 trials 

in the hierarchy task. 

Two additional GLMs were built using the same procedure as above. One model (GLM2) 

estimated the responses associated with each of the 8-trial types but now split by what motor 

response mapping was employed, resulting in 16 trial-type regressors.  Another model (GLM3) 

was identical to GLM1 except that it replaced the 8 trail-types regressors with 8 regressors for 

pseudo-trial-types defined by the orthogonal, task-irrelevant features of each stimulus. The 

subsampling procedure described for GLM1 was also reapplied in the construction of regressors 

for GLM2 and GLM3 to equate the number of trials and balance the motor responses 

contributing to each trial-type regressor in each run.  

All three models otherwise included identical nuisance regressors. To reduce the impact 

of time-on-task on estimated regression weights, the duration of trial events in each of the above 

regressors was set to the trial-wise RT, or the duration of the stimulus display (2 seconds) for 

missed responses71. Nuisance regressors for left and right button presses with an onset at the time 

of participant response and a duration of 0 seconds were included. An additional nuisance 

regressor for the run mean was also included. Participant motion was captured in three 
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translational and three rotational components, and these were used to generate a total of twenty-

four motion-related nuisance regressors: absolute values, difference from prior volume, and 

square of each term72. All motion estimates were obtained within-run.  

We did not employ high-pass filtering to reduce low-frequency noise. Instead, the first 

five principal components of the BOLD measurements from cerebrospinal fluid (CSF) and white 

matter (WM) voxels, as defined by SPM12’s segmentation functionality, were generated using 

the PhysIO toolbox73 and included as nuisance denoising regressors. The PhysIO toolbox was 

part of the open-source software package TAPAS74 

(http://www.translationalneuromodeling.org/tapas). 

Simultaneously collected physiological data (respiration rate and pulse oximeter 

readings) were also modeled with the PhysIO toolbox using the RETROICOR75 procedure to 

estimate Fourier expansions of different order for the phases of cardiac pulsation (3rd order, 6 

regressors), respiration (4th order, 8 regressors) and cardio-respiratory interactions (1st order, 4 

regressors). In addition, PhysIO was used to model respiratory volume per time (RVT, 1 

regressor) and heart rate variability (HRV, 1 regressor). In cases when physiological data were 

not collected for a single run, these twenty regressors were excluded from models. This occurred 

approximately equally between the two main tasks (24 runs across five participants for the 

hierarchical task and 25 runs across six participants in the flat task) and infrequently (5% of runs 

overall).  

Multivoxel Pattern Analyses 

Decoding Representational Content: To estimate the representational content of the neural 

activity in each predefined ROI, we implemented a series of cross-validated decoding analyses 

using the Decoding Toolbox 76 in MATLAB. A series of linear support vector machines (cost 
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parameter c = 1) were constructed, separately for each task, to test whether specific binary 

variables (e.g. stimulus features: adult vs child face, indoor vs outdoor scene, low vs high 

number, etc; response category: circle vs square; motor responses: left vs right key press) were 

encoded in the set of run-wise multi-voxel beta patterns associated with each trial type estimated 

using the GLMs described above (GLM1 for task-relevant features and GLM3 for orthogonal, 

task-irrelevant features). No additional voxel selection was carried out.  

We employed a linear classifier under the widely held simplifying assumption that linear 

kernels approximate a plausible readout mechanism that might be implemented by a single 

downstream neuron77,78. Classification was implemented using a leave-one-run-out cross-

validation scheme. Each run was iteratively held out as a test set, while the remaining runs 

formed the training set used to train the classifier. Therefore, on each cross-validation fold, the 

classifier was trained on patterns from n-1 runs, and tested on the patterns from the left-out test 

run. Classifier decoding accuracy was defined as the mean test set accuracy across all cross-

validation folds. A cross-validated decoding accuracy greater than chance (50%) provides 

evidence that the decoded task dimension is represented in the underlying multi-voxel activity. 

Decoding accuracies were statistically evaluated at the group level using either a one-sample t-

test against chance, or a Wilcoxon signed-rank test.   

For testing whether task-relevant features are encoded, a total of five sets of classifiers 

were constructed and tested for each participant and task and region, one to decode each of the 

three stimulus features, one to decode the response category (e.g., square or circle category), and 

one to decode the motor response (left vs right key press) on the patterns estimated from GLM1. 

Another set of 3 classifiers was constructed to decode each of the three orthogonal, task-

irrelevant stimulus features on the patterns estimated from GLM3.  
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Separability Analysis: To estimate the separability of neural representations in each predefined 

ROI, we employed a previously described decoding-based approach. Specifically, we examined 

the decodability of all possible binary dichotomies with a linear classifier. These binary 

dichotomies reflect the many possible ‘dimensions’ that could be read out from the mixture of the 

task inputs. The greater the number of such dichotomies that can be read out, the more separable 

the representation and the higher its dimensionality27,28. While a total of 28 possible dichotomies 

exist given 8 possible inputs, we restricted ourselves to all 35 balanced binary dichotomies which 

had an equal number of patterns for each class (4 trial types each) 24,32 to minimize classifier bias 

resulting from unbalanced training data. Therefore, for each subject, ROI and task we trained a set 

of 35 linear classifiers to test the decodability of each of these dichotomies using the same leave-

one-run-out cross-validation approach as described above. Mean cross-validated decoding 

accuracies for each of the 35 linear classifiers were evaluated against chance after a Bonferroni 

correction for 35 multiple comparisons.  

Separability analyses were separately carried out for each subject, ROI, task, and patterns 

estimated from GLM1 (trial-types defined by task-relevant features) and GLM3 (pseudo trial-types 

orthogonal, task-irrelevant features). In addition, task-specific analyses were separately carried out 

for response-category-specific patterns (flat task) and context specific patterns (hierarchy task) 

from GLM2 to estimate the separability of local representations in response-category and context 

subspaces respectively in the flat and hierarchy task.  

We assessed separability using three different measures. First, we computed, at the group 

level, the proportion of 35 dichotomies could be successfully decoded (after a conservative 

multiple-comparison correction). Second, we computed shattering dimensionality, defined as the 
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mean decoding accuracy across all 35 dichotomies. Shattering dimensionality reflects the overall 

separability of the representation and is informed by separability along a wide range of neural 

dimensions. Because shattering dimensionality can be biased by the strength of pure-selective 

coding of task variables, it does not cleanly reflect separability resulting from the non-linear 

mixing of individual input features in the representation. Finally, therefore, to examine separability 

while minimizing the influence of pure selective coding, we also defined mixed selective 

variability as the mean decoding accuracy across the subset of dichotomies that were orthogonal 

to all identifiable task-relevant variables (3 stimulus features and response categories). Separability 

measures were formally compared across tasks, GLMs or ROIs using parametric statistics.  

 

Abstraction Analysis: To test if the representation of a task feature was abstract (i.e., invariant to 

changes in independent task features), we carried out cross-generalization analyses where we 

tested the classifier on patterns derived from a different set of conditions than on which it was 

trained, again using a leave-one-run-out cross-validation scheme as before24. For example, to test 

whether the coding of response category (i.e., square or circle category) was abstract in the flat 

task, we randomly subsampled two of the trial-types associated with each of the two response 

categories, and then tested the classifier on the remaining trial-types. In this example, this was 

repeated 36 times to cover all possible combinations of train and test sets.  

The mean cross-validated performance across all these classifiers is referred to as the 

cross-classification generalization performance (CCGP) 24. Above-chance decoding accuracies, 

in this case, provide evidence that the representations of the decoded features (e.g., response 

category) are at least partially invariant to changes in other features (e.g., stimulus features) and 
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rule out a maximally expanded high-dimensional representation. Higher levels of CCGP reflect 

greater degrees of abstraction in the representation.  

We assessed CCGP for all 35 possible balanced dichotomies from patterns estimated from 

GLM1. In addition, task-specific abstraction analyses were separately carried out for response-

category-specific patterns (flat task) and context-specific patterns (hierarchy task) from GLM2 to 

estimate the CCGP of local representations in response-category and context subspaces 

respectively in the flat and hierarchy task.  

 

Representational Alignment Analysis: To test whether two representations are aligned, we first 

trained classifiers to decode each represented variable and then estimated the angle between their 

coding axes. The coding axis is mathematically defined by a vector of the weights of a trained 

linear classifier whose direction is perpendicular to the separating hyperplane learned by the 

classifier. Two representations are fully aligned if their coding axes are parallel, and they are 

orthogonal if they are at right angles. Therefore, the angle between the coding axes of a pair of 

trained classifiers provides an estimate of the degree of alignment of the underlying 

representations. To estimate the representational alignment, we extracted weight vectors from a 

pair of trained classifiers from each cross-validation fold and calculated their normalized overlap 

which equals the cosine of the angle between them.  

cos 𝜃 = 	
w!(((((⃗ ∙ 	𝑤((⃗ "
|	𝑤!((((⃗ |	|	𝑊"	|((((((((⃗  

Angles were then computed by taking the arccosine and were averaged across cross-validation 

folds by computing the circular mean. Angles were statistically evaluated using circular 

statistics.   
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Representational Similarity Analysis (RSA): RSA was performed using the python package 

RSAtoolbox79 (version 3.0). First, for each participant and each ROI, a task-level empirical 

representational dissimilarity matrix (RDM) was constructed by calculating the cross-validated 

Mahalanobis (‘crossnobis’) distances between the regressors for the eight possible trial types79. 

Cross-validation was performed across run measurements, and the voxel covariance estimates 

were calculated using the diagonal shrinkage method80 on the residual signal from the fit GLM.  

To test how the representation of different types of task-relevant information might be 

reflected in the distances between trial-type patterns, we regressed the neural RDMs on a set of 

separate model RDMs which capture predicted pair-wise distances between patterns driven by 

three stimulus features and response categories. For the hierarchy task, an additional model 

RDM was included that reflects the predicted pair-wise distances driven by only the context-

relevant feature in each context. All model RDMs are depicted in Fig. S1. All regressions also 

included an “identity” model RDM that predicts similarity driven only by the individual trial 

type.   

For each participant, we fit the weighted sum of model RDMs which minimizes the 

cosine distance to their empirical RDM, and the regression estimates are then statistically 

evaluated using parametric statistics.   

 

Data and code availability 

Preprocessed, deidentified data and analysis code will be made available at the time of 

final publication on a public repository. Prior to that, data and code are available upon request.  
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